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Abstract 

Background Changes in DNA methylation are common events in the pathogenesis of acute myeloid leukemia 
(AML) and have been repeatedly reported as associated with prognosis. However, studies integrating these numer-
ous and potentially prognostically relevant DNA methylation changes are lacking. Therefore, we aimed for an overall 
evaluation of these epigenetic aberrations to provide a comprehensive NGS-based approach of DNA methylation 
assessment for AML prognostication.

Results We designed a sequencing panel targeting 239 regions (approx. 573 kb of total size) described in the lit-
erature as having a prognostic impact or being associated with AML pathogenesis. Diagnostic whole-blood DNA 
samples of adult AML patients divided into a training (n = 128) and a testing cohort (n = 50) were examined. The librar-
ies were prepared using SeqCap Epi Enrichments System (Roche) and sequenced on MiSeq instrument (Illumina). 
Altogether, 1935 CpGs affecting the survival (p < 0.05) were revealed in the training cohort. A summarizing value 
MethScore was then calculated from these significant CpGs. Patients with lower MethScore had markedly longer 
overall survival (OS) and event-free survival (EFS) than those with higher MethScore (p < 0.001). The predictive ability 
of MethScore was verified on the independent testing cohort for OS (p = 0.01). Moreover, the proof-of-principle valida-
tion was performed using the TCGA dataset.

Conclusions We showed that comprehensive NGS-based approach of DNA methylation assessment revealed 
a robust epigenetic signature relevant to AML outcome. We called this signature MethScore and showed it might 
serve as a strong prognostic marker able to refine survival probability of AML patients.
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Background
Acute myeloid leukemia (AML) is a hematopoietic malig-
nancy characterized by a substantial heterogeneity in 
terms of disease prognosis. Despite increasing usage of 
next-generation sequencing (NGS) allowing sensitive 
and specific mutational detection, not all AML patients 
possess genetic markers with a clear predictive role [1]. 
Refining the AML prognosis is therefore still needed, 
because their outcome is highly variable [2].

DNA methylation is a well-established and intensively 
studied epigenetic phenomenon, and its aberration is 
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involved in a variety of different malignancies [3, 4]. In 
the field of AML research, many investigators focused 
on DNA methylation and reported its clinical utility for 
prognostic stratification—reviewed in Yang et  al. [5]. 
Importantly, changes in DNA methylation are not only 
mirroring the underlying genetic variations but have 
their own indisputable role in AML onset and patho-
physiology [6].

Therefore, we introduced a unique and comprehen-
sive approach to assess previously reported prognostic 
DNA methylation changes at once. We hypothesized 
that such approach might reveal a robust epigenetic 
profile with prognostic value. For this purpose, we 
designed an NGS-based DNA methylation panel com-
prising of genes previously published as having an 
impact on AML outcome, altogether with genes gen-
erally involved in AML pathogenesis (WT1 and HOX 
genes), and genes that emerged from our unpublished 
research to evaluate their collective influence on AML 
prognosis. List of regions targeted by the methylation 
sequencing panel (according to the Human GRCh37/
hg19 genome assembly) is shown in Additional file  1. 
This DNA methylation panel was utilized also in 
our previous DNA methylation validation study [7]. 
Apart from the current study, we examined selected 

individual genes and validated their influence on AML 
prognosis separately.

Results
MethScore as a novel epigenetic marker for AML outcome 
prediction
After the application of Cox univariate regression analy-
sis on the filtered sequencing data (described in Meth-
ods section), we found 1935 CpGs significantly affecting 
OS (p < 0.05) in the training cohort (n = 128; for basic 
or detailed molecular and clinical characterization see 
Table  1 or Additional file  2, respectively). The full list 
including the positions and average methylation lev-
els of these CpGs is provided in Additional file  3. Out 
of these presumably prognostically significant CpGs, 
higher methylation levels indicated better outcome in 
1091 CpGs and, on the contrary, worse prognosis in 
the remaining 844 CpGs. The CpGs were annotated 
to 222 genes associated mainly with transcription and 
RNA regulation, DNA binding, and embryonic develop-
ment. Genes annotated to the most significant CpGs are 
listed in Table  2. Using these 1935 CpGs, we computed 
a weighted summary score from methylation levels and 
Cox regression coefficients for each patient and named 
it MethScore (details in Methods section). MethScore 

Table 1 Clinical and molecular characteristics of AML training and testing cohort

Variable AML training cohort (n = 128) AML testing cohort (n = 50)

Age (years) Median: 55 (range 21–69) Median: 59 (range 24–75)

Gender (males/females) 68/60 24/26

Leukocytes count  [109/l] Median: 66.5 (range 1–136) Median: 22.9 (range 0.7–218)

Blasts in bone marrow [%] Median: 53.4 (0–97.8) Median: 50 (20–91.8)

Karyotype (Grimwade 2010)

Favorable 9 (7%) 3 (6%)

Intermediate 87 (68%) 38 (76%)

Adverse 30 (23%) 9 (18%)

Not evaluable 2 (2%) 0

ELN 2017

Favorable 33 (26%) 19 (6%)

Intermediate 44 (34%) 18 (76%)

Adverse 41 (32%) 13 (18%)

Not evaluable 10 (8%) 0

FLT3 status

Wild-type 95 (74%) 37 (74%)

Internal tandem duplication 32 (25%) 13 (26%)

Not evaluable 1 (1%) 0

NPM1 status

Wild-type 80 (62%) 29 (58%)

Mutated 43 (34%) 21 (42%)

Not evaluable 5 (4%) 0

Complete remission after 1st induction 70 (55%) 34 (68%)
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proved to predict both overall (OS) and event-free sur-
vival (EFS) with high accuracy. We divided AML sam-
ples from the training cohort according to the median 

MethScore value, and patients with a lower MethScore 
had markedly longer OS and EFS than patients with a 
higher MethScore (logrank test for OS: p < 2e−16; for 
EFS: p = 5e−16), see Fig. 1A. MethScore ranged from − 85 
to 690 with median 394 and average 380 in the training 
cohort. To get an overview of acquired MethScore values, 
we computed the z-score and compared it with the aver-
age methylation levels (of the 1935 CpGs) and number 
of mutations, see Fig.  2A. Higher MethScore correlated 
with lower average methylation (R = − 0.56, p = 6.2e−12) 
and weakly with higher number of mutations (R = 0.19, 
p = 0.036). We also computed the MethScore for the 
healthy donors (n = 11); the range of values was from 334 
to 503, with median 431 and mean 421 (Additional file 4).

Subsequently, we computed MethScore of the same 
set of 1935 CpGs for the testing cohort (n = 50; for basic 
or detailed molecular and clinical characterization see 
Table 1 or Additional file 2, respectively). MethScore val-
ues for the testing cohort ranged from − 88 to 584 with 
median 334 and mean 328. When comparing the survival 

Table 2 Top 10 significant CpGs from Cox univariate analysis

HOTTIP lncRNA associated with HOXA cluster, EZH2 histone-lysine 
N-methyltransferase, AC012531.2 lncRNA associated with HOXC cluster, LTB 
lymphotoxin beta, HOXB7 homeobox gene, TNF tumor necrosis factor, BTBD3 
BTB domain containing protein 3

Gene p value Genome position (hg19)

HOTTIP 0.000039 chr7: 27244052–27244053

EZH2 distal promoter 0.000061 chr7: 148581518–148581519

AC012531.2 0.000084 chr12: 54412344–54412345

LTB 0.00012 chr6: 31549043–31549044

HOXB7 0.00013 chr17: 46708857–46708858

TNF 0.00013 chr6: 31544960–31544961

HOTTIP 0.00013 chr7: 27244051–27244052

EZH2 distal promoter 0.00013 chr7: 148581941–148581942

BTBD3 0.00016 chr20: 11899128–11899129

EZH2 0.00016 chr7: 148580658–148580659

Fig. 1 Kaplan–Meier curves with p-values of two-sided logrank test comparing both OS and EFS of patients with higher and lower MethScore. A In 
the training cohort (n = 128); B In the testing cohort (n = 50)
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Fig. 2 Z-score values computed from MethScore together with the average methylation and number of mutations for each patient from A 
the training cohort (n = 128); B the testing cohort (n = 50)
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of AML patients with higher or lower MethScore values 
(divided by median value of the training cohort), the dif-
ference remained significant for OS (logrank test for OS: 
p = 0.03), but not for EFS (logrank test for EFS: p = 0.1)—
Fig. 1B. Z-score graph together with the average methyla-
tion and the number of mutations for the testing cohort 
are shown in Fig. 2B. Similar to the training cohort data, 
higher MethScore strongly correlated with lower aver-
age methylation (R = − 0.8, p = 2.8e−12) and weakly 
correlated with higher number of mutations (R = 0.27, 
p = 0.061) in the testing cohort.

For both cohorts, we further examined the prognostic 
relevance of MethScore in multivariate analyses; results 
are summarized in Figs. 3 and 4, respectively. Firstly, the 
full model with all tested variables was evaluated. Subse-
quently, backward stepwise variable selection using the 
AIC method was implemented to reduce the number of 
relevant variables. For OS in the training as well as in the 
testing cohort, MethScore remained among the most 
significant predictors not only in the full model but also 
in the reduced one. For EFS in the testing cohort, Meth-
Score did not prove its prognostic capability in the full 
nor in the reduced model. A comparison of patients with 
lower and higher MethScore is summarized in Table 3.  

Proof‑of‑principle validation in the TCGA dataset
AML from TCGA study [8] with complete clinically rel-
evant data (n = 169, Additional file 5) were split into the 
training (n = 85) and the testing (n = 84) cohort. Only 
CpGs corresponding to genes used in our DNA methyla-
tion panel were selected (n = 5411) to better reflect our 

panel data and to reduce number of analyzed CpGs. Sub-
sequently, data were filtered in the same manner as our 
data. Finally, CpGs associated with survival were deter-
mined by univariate Cox regression analysis resulting 
into 289 significant CpGs (p < 0.05) in the TCGA train-
ing cohort (n = 85). These CpGs are listed in Additional 
file 6. MethScore calculation was then performed as orig-
inally described. MethScore values for the TCGA train-
ing cohort ranged from − 399 to − 212 with median − 287 
and mean − 290. We separated AML samples from the 
TCGA training cohort according to the median Meth-
Score value, and patients with lower MethScore had 
clearly longer OS than patients with higher MethScore 
(Logrank test for OS: p < 5e-04)—see Fig.  5A. The same 
set of 289 CpGs was utilized for MethScore calculation 
in the TCGA testing cohort (n = 84). MethScore values 
for the TCGA testing cohort ranged from − 374 to − 225 
with median − 268 and mean − 279. Reassuringly, sur-
vival difference of AML patients with higher versus lower 
MethScore values (divided by median value of the TCGA 
training cohort) remained significant (logrank test for 
OS: p = 0.008)—see Fig. 5B.

CpGs assigned to HOX genes prevail among CpGs 
associated with AML survival
In the set of 1935 CpGs that were used for the MethScore 
computation, 636 CpGs (32.9%) were associated with 
HOX genes. Most CpGs belonged to the HOXA gene 
cluster (n = 293) and CpGs with lower methylation values 
indicating better AML outcome prevailed (75%). HOXB-
associated CpGs were also highly represented (n = 148), 

Fig. 3 Forest plots from Cox multivariate regression analysis for overall and event-free survival in the training cohort: A the full model, B 
the reduced model
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Fig. 4 Forest plots from Cox multivariate regression analysis for overall and event-free survival in the testing cohort: A the full model, B the reduced 
model

Table 3 Comparison of patients with lower (< median) and higher (> median) MethScore

CR complete remission, NA not analyzed, SD standard deviation; p-values < 0.05 indicated in bold

Training cohort (n = 128) Testing cohort (n = 50)

Low MethScore 
(n = 64)

High MethScore 
(n = 64)

p value Low MethScore 
(n = 35)

High MethScore 
(n = 15)

p value

ELN 2017 Favorable 14 4 0.004 13 6 1.000

Intermediate 36 31 13 5

Adverse 8 20 9 4

NA 6 9 0 0

Sex Male/Female 34/30 34/30 1.000 19/16 5/10 0.224

Transplantation 
in 1st CR

Yes/No/NA 36/28/0 21/43/0 0.012 16/19/0 2/13/0 0.052

Relapse 20/44/0 22/42/0 0.851 15/20/0 8/7/0 0.548

CR after 1st induc-
tion

44/19/1 26/37/1 0.002 23/12/0 11/4/0 0.746

FLT3-ITD Positive/Negative/
NA

14/49/1 18/46/0 0.541 7/28/0 6/9/0 0.170

DNMT3A mutation 17/40/7 23/33/8 0.242 5/30/0 5/10/0 0.143

IDH1/2 mutation 12/45/7 14/42/8 0.660 7/28/0 0/15/0 0.087

TET2 mutation 4/49/11 7/42/15 0.346 2/33/0 2/13/0 0.574

ASXL1 mutation 4/49/11 5/44/15 0.735 2/33/0 3/12/0 0.152

NRAS mutation 8/45/11 9/40/15 0.184 9/26/0 4/11/0 1.000

TP53 mutation 0/55/9 12/43/9  < 0.001 2/33/0 1/14/0 1.000

NPM1 mutation 22/40/2 21/40/3 1.000 14/21/0 7/8/0 0.759

CEBPA mutation 4/59/1 4/55/5 1.000 2/33/0 1/14/0 1.000

RUNX1 mutation 4/49/11 5/44/15 0.735 1/34/0 1/14/0 0.514

Number of muta-
tions

Average ± SD/
Median

1.7 ± 1.3/1.5 2.3 ± 1.7/2.0 0.099 1.8 ± 1.2/2.0 2.5 ± 1.8/3.0 0.161

Age 45.5 ± 13.4/44.0 55.1 ± 10.0/58.3  < 0.001 54.1 ± 14.4/59.0 58.9 ± 12.1/60.0 0.285

Leukocytes 63.6 ± 39.3/61.0 69.4 ± 40.4/70.0 0.400 48.1 ± 59.1/19.9 51.4 ± 63.9/29.0 0.751
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and there was nearly an equal number of CpGs with 
prognostically positive lower (51%) and higher (49%) 
methylation values. The rest of the significant CpGs 
were assigned to HOXC (n = 33) and HOXD (n = 162) 
gene clusters, and majority of these CpGs (73% and 80%, 
respectively) were those for which hypermethylation was 
favorable for AML outcome.

To better understand the observed DNA methylation 
changes in case of HOXA and HOXB genes, we plotted 
the average methylation values of healthy donors and 
AML samples divided according to their survival, see 
Fig. 6. There was a distinct region in both HOX clusters 
displaying clear hypomethylation in patients with shorter 
survival.

Discussion
A large number of studies already addressed the impor-
tance of DNA methylation changes for AML progno-
sis. Therefore, we designed a custom NGS-based DNA 
methylation panel comprising of loci/genes from selected 
studies as well as genes generally connected to AML 
pathogenesis such as HOX genes and WT1. Apart from 
our recent study [7] that validated individual DNA meth-
ylation changes and utilized the same AML cohort as 
well as the DNA methylation sequencing panel, we now 
wanted to evaluate all potential epigenetic markers com-
prehensively at once.

We introduced MethScore, a simply computed value 
that comprehensibly evaluated the prognostic impact of 
DNA methylation on AML prognosis. As the first step in 
MethScore assessment, we identified a set of almost two 
thousand CpGs associated with AML survival. Approxi-
mately one-third of these loci was assigned to HOX 
genes, predominantly to HOXA and HOXB clusters. The 

indispensable role of homeobox genes in hematopoie-
sis control is well known, and their impaired expression 
and aberrant DNA methylation have been implicated as 
a prognostic marker in AML [9–11]. Overexpression and 
hypomethylation of HOXA genes were reported as a key 
feature of leukemia stem cells (LSC) signature and vali-
dated in several independent AML cohorts in connec-
tion with worse survival [12]. Concordantly, we observed 
hypomethylation within the HOXA cluster in AML with 
shorter survival (Fig.  5A). This region overlaps with 
38-kbp region reported as regulatory for HOXA locus 
[13]. Similarly, we noted hypomethylation in a regulatory 
region of HOXB cluster in patients with shorter survival 
(Fig.  5B). There was also an overlap with locus control 
region reported for HOXB cluster in the study by Spencer 
et al. [13]. This hypomethylation may point to an overex-
pression of HOXB genes that is also well documented as 
an adverse prognostic factor [14, 15].

Considering the MethScore values, higher MethScore 
strongly correlated with lower DNA methylation lev-
els and weakly correlated with an increased number of 
mutations. The higher mutational burden may represent 
a progressing genome instability that is also character-
ized by substantial DNA methylation changes [16]. The 
lower average methylation in patients with higher Meth-
Score and thus adverse outcome probably reflects the 
previously published discoveries that increased meth-
ylation at specific loci may serve as a break preventing 
AML progression [13], and thus, higher DNA methyla-
tion is prognostically more favorable [17]. In the Kaplan–
Meier analysis of the training cohort, MethScore had a 
striking significance for both overall and event-free sur-
vival, which was further confirmed in a multivariate Cox 
regression analysis. The predictive ability of MethScore 

Fig. 5 Kaplan–Meier curves with p-values of two-sided logrank test comparing OS of AML patients with higher and lower MethScore. A 
in the TCGA training cohort (n = 85); B in the TCGA testing cohort (n = 84)
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Fig. 6 Average methylation levels of CpGs within HOXA/B clusters that were found as significant for patients OS. Values for healthy donors (n = 11), 
AML patients with OS < 2 years (n = 54), and AML patients with OS > 2 years (n = 74) are shown. The lower half of each image was taken from UCSC 
Genome Browser, assembly GRCh38/hg19. A HOXA gene cluster B HOXB gene cluster. Regions with hypomethylation in patients with shorter 
survival are highlighted
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was also proved in the independent testing cohort for OS, 
but not for EFS. It must be emphasized that the actual 
MethScore value can be used for prognostic stratification 
only if the same experimental setting is kept—essentially, 
usage of the same input cell type (whole blood), sample 
preparation and NGS-based DNA methylation analy-
sis. Otherwise, we would recommend to firstly perform 
MethScore value calculation for a consistent cohort of 
AML patients in the settings suitable for each labora-
tory. There might be considerable difference for usage of 
peripheral blood vs bone marrow, mononuclear cells vs 
whole blood, sorted blast vs unsorted population. Also, 
a method of DNA methylation assessment (e.g. NGS vs 
array) may affect the resulting MethScore value. To pro-
vide not only validation of a particular MethScore value 
that may not be applicable for everyone, we also accom-
plished a proof-of -principle validation in the  publicly 
available TCGA dataset [8]. Although summarizing DNA 
methylation value was calculated from lower number of 
CpGs (n = 289) with only minor overlap with 1935 pre-
viously determined CpGs (8/1935, see Additional file 6), 
it justified its applicability for AML prognostication in 
terms of OS. This assured us of the validity and clinical 
applicability of MethScore.

Conclusions
We introduced a novel approach for complex assessment 
of DNA methylation changes in AML patients. Meth-
Score is based on data measured by NGS, which is a com-
mon technique available in nearly all laboratories, and its 
computation is simple and easy to reproduce. We showed 
that MethScore may help to improve the risk assessment 
of AML patients. We believe that after a proper valida-
tion, MethScore or some other similarly computed sum-
marizing DNA methylation value may complement the 
currently used biomarkers and serve as a robust epige-
netic marker refining the AML prognosis.

Methods
Patients
The training cohort comprised of 128 consecutive non-
APL diagnostic AML patients from the Institute of 
Hematology and Blood Transfusion (Prague, Czech 
Republic). The testing cohort consisted of 50 consecu-
tive non-APL AML patients from the University Hospital 
Brno (Brno, Czech Republic). All patients were diagnosed 
with AML between 2013 and 2016 and were treated with 
curative intent starting with 3 + 7 induction regimen. 
Basic clinical characteristics are summarized in Table 1, 
and detailed information is provided in Additional file 2. 
The study was approved by the Ethics committees of 
both participating institutions. All patients and healthy 
donors provided their informed consent. The research 

conforms with The Code of Ethics of the World Medical 
Association.

DNA methylation sequencing panel
The panel for targeted bisulfite sequencing consisted 
of 239 loci assigned to 186 genes. The custom probes 
were made by Roche (Basel, Switzerland). The range 
of selected regions was 121–35606  bp with an average 
of 2910 bp and median of 1473 bp. The total size of the 
panel was 573406 bp. The investigated regions are listed 
in Additional file 1.

Targeted bisulfite sequencing
Sequencing libraries consisted of 16–18 samples and 
were prepared according to the SeqCap Epi protocol 
(Roche, Basel, Switzerland). Diagnostic whole-blood 
DNA from AML patients was used. Together with the 
test cohort, we also analyzed 11 samples from healthy 
donors. Their DNA was isolated from CD34 + cells har-
vested from buffy coats by magnetic separation using 
MicroBeads kit (Miltenyi Biotec, Bergisch Gladbach, 
Germany). We utilized KAPA HyperPrep Kit (Roche) to 
prepare the libraries. The DNA (800–1200  ng) was first 
mixed with the bisulfite-conversion control (unmethyl-
ated DNA from phage lambda) provided in the SeqCap 
Epi Accessory kit (Roche) and then fragmented either 
via E220 Focused ultrasonicator (Covaris, Woburn, MA, 
USA) or Bioruptor Pico instrument (Diagenode, Liège, 
Belgium) to get an average size of 200 bp. For the bisulfite 
conversion, EZ DNA Methylation Lightning Kit (Zymo 
Research, Irvine, CA, USA) was used as recommended 
in the SeqCap Epi protocol. Pooled samples from each 
library were hybridized for about 68 h with DNA meth-
ylation sequencing panel probes. We measured the final 
concentration of the libraries via qPCR using KAPA 
Library Quantification Kit (Roche), and the average size 
of the libraries’ fragments was assessed on 4200 TapeSta-
tion System (Agilent Technologies, Santa Clara, CA, 
USA). Libraries were sequenced on MiSeq instrument 
(Illumina, San Diego, CA, USA) using the MiSeq Reagent 
Kit v2 (300-cycles) (Illumina).

Sequencing data analysis
The quality of raw sequencing data in the form of fastq 
files was checked using FastQC (version 0.11.8) [18] and 
MultiQC (version 1.7) [19] software. Reads were then 
trimmed and filtered using Cutadapt 2.4 (version 2.4) 
[20], and the quality of reads was checked again. Next, 
the filtered data were mapped with the mapping software 
Segemehl (version 0.3.4) [21] to human genome version 
GRCh37/hg19 with added sequence of Enterobacteria 
phage lambda NC_001416.1. Mapping statistics were 
assessed (more than 80% of reads were properly mapped 
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in all samples). The mapped reads in the form of bam 
files were sorted and indexed by Samtools software (ver-
sion 1.10). Subsequently, the Haarz tool (version 0.3.4) 
[21] with enabled "callmethyl" option was used to select 
methylated positions and create vcf files. These files, con-
taining all methylated positions, were further processed 
in R software. Positions that corresponded to the lambda 
phage sequence were separated and used for the bisulfite 
conversion ratio assessment for each sample (higher than 
99% in all samples). Remaining positions were filtered 
and only CpG positions were left in the data.

Computation of the MethScore
All computations were performed in R software (ver-
sion 4.0.0). The initial analysis was done for the train-
ing cohort only. Firstly, we filtered out CpGs that were 
not sequenced in a majority of samples (75%) and 54064 
CpGs remained. Next, we selected CpGs where the dif-
ference between minimal and maximal methylation 
values across all samples including healthy donors was 
more than 20% to evaluate only CpGs that are differen-
tially methylated. We acquired a set of 47622 CpGs. Sub-
sequently, Cox univariate regression analysis of DNA 
methylation levels of individual CpGs and overall sur-
vival was performed. Only those CpGs with significant 
p-value (< 0.05) were selected (n = 1935). Next, using a 
linear combination of methylation levels and Cox regres-
sion coefficients of CpGs associated with OS, we counted 
a weighted summary score and called it MethScore. This 
computation was adapted from Marcucci et al. [22] who 
used the similar method to count a summarizing score 
of differential gene expression. The MethScore (MS) for 
patient i was calculated by this equation MSi = wj · xij , 
where Wj is the Cox regression coefficient for CpG j and 
xij is a methylation value (range 0–1) for CpG j in patient 
i. MethScore for AML samples from the testing cohort 
was computed via the same equation and for the same 
subset of CpGs as used in the training cohort. The whole 
step-by-step procedure and R script is provided within 
Additional file 7.

Statistical analyses and definitions
All statistical analyses were performed in R software 
(version 4.0.0). Overall survival (OS) was defined as 
time from diagnosis until death of any cause. Event-free 
survival (EFS) was defined as time from the first com-
plete remission until death or hematological relapse. 
Kaplan–Meier curves and two-sided logrank test were 
used to estimate the significance for OS and EFS. Cox 
regression was performed as uni- or multivariate analy-
ses. For the multivariate analyses  (MVA), the input data 

were corrected to the effect of transplantation by using 
time-dependent covariate for transplantation. MethScore 
values used for Cox regression analyses were normalized 
by z-score method to get a range of values comparable 
to other variables used in MVA. All multivariate analy-
ses were initially performed with full range of clinical 
variables. Subsequently, Akaike information criterion 
(AIC) method was used to reduce the number of tested 
variables, to keep only relevant ones. For each regres-
sion model, the proportional hazards assumption was 
checked. In the patients’ comparisons, Fisher’s exact 
test was used to compare the categorical variables, and 
unpaired two-samples Wilcoxon test (Mann–Whitney 
test) was used for the continuous variables’ comparison 
(Table 3). Pearson correlation coefficient (PCC) was uti-
lized for a linear correlation between two sets of data.

TCGA data analysis
TCGA methylation array data were downloaded from 
National Cancer Institute portal (https:// portal. gdc. can-
cer. gov/ proje cts/ TCGA- LAML). This dataset initially 
contained 194 AML samples, but it had to be reduced 
by 25 samples, since information about death of patient 
and overall survival was not available for these samples. 
Resulting TCGA dataset therefore contained 169 samples 
(Additional file 5). Methylation array data were then fil-
tered based on genomic position; only those CpGs were 
kept, which corresponded with genomic coordinates of 
our custom sequencing panel (Additional file  1). This 
filtering resulted in 5411 CpG positions, which were 
further filtered in the same manner as our  panel data. 
Firstly, only those positions, which had non-NA methyla-
tion value in at least 75% of all samples were kept, result-
ing in table containing 4465 CpG positions. Secondly, 
only those CpGs where difference between minimum 
and maximum methylation value across all samples was 
at least 20% (0.2) were kept. Resulting table contained 
3566 CpG positions. Thus, filtered TCGA data were then 
divided into training (n = 85) and testing (n = 84) cohort 
by random sampling. Univariate Cox regression analysis 
was then performed on all CpG positions left after fil-
tering in TCGA training cohort. Leftover missing data 
were not addressed, since Cox regression analysis was 
performed in univariate setting. Out of all 3566 tested 
CpGs, only those CpGs which were evaluated as signifi-
cant (p < 0.05) were used in subsequent analyses. This 
resulted in the list of 289 significant CpGs (Additional 
file 6). MethScore was calculated as previously described 
for each sample in TCGA training and testing cohort, 
and subsequent statistical analyses were performed.

https://portal.gdc.cancer.gov/projects/TCGA-LAML
https://portal.gdc.cancer.gov/projects/TCGA-LAML
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Gene ontology analysis
For the gene ontology analyses, free online programs 
were used. Bed files containing the positions of selected 
CpGs were submitted to the online annotation tools 
GREAT [23] and Enrichr [24]. The gene lists generated in 
Enrichr from bed files were further submitted to GOrilla 
tool [25].
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