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Abstract 

Background Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with poor prognosis. It is marked 
by extraordinary resistance to conventional therapies including chemotherapy and radiation, as well as to essentially 
all targeted therapies evaluated so far. More than 90% of PDAC cases harbor an activating KRAS mutation. As the most 
common KRAS variants in PDAC remain undruggable so far, it seemed promising to inhibit a downstream target 
in the MAPK pathway such as MEK1/2, but up to now preclinical and clinical evaluation of MEK inhibitors  (MEKi) failed 
due to inherent and acquired resistance mechanisms. To gain insights into molecular changes during the formation 
of resistance to oncogenic MAPK pathway inhibition, we utilized short‑term passaged primary tumor cells from ten 
PDACs of genetically engineered mice. We followed gain and loss of resistance upon  MEKi exposure and withdrawal 
by longitudinal integrative analysis of whole genome sequencing, whole genome bisulfite sequencing, RNA‑sequenc‑
ing and mass spectrometry data.

Results We found that resistant cell populations under increasing  MEKi treatment evolved by the expansion of a sin‑
gle clone but were not a direct consequence of known resistance‑conferring mutations. Rather, resistant cells showed 
adaptive DNA hypermethylation of 209 and hypomethylation of 8 genomic sites, most of which overlap with regula‑
tory elements known to be active in murine PDAC cells. Both DNA methylation changes and  MEKi resistance were 
transient and reversible upon drug withdrawal. Furthermore,  MEKi resistance could be reversed by DNA methyltrans‑
ferase inhibition with remarkable sensitivity exclusively in the resistant cells.

Conclusion Overall, the concept of acquired therapy resistance as a result of the expansion of a single cell clone 
with epigenetic plasticity sheds light on genetic, epigenetic and phenotypic patterns during evolvement of treat‑
ment resistance in a tumor with high adaptive capabilities and provides potential for reversion through epigenetic 
targeting.
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Background
Overcoming treatment resistance is a critical challenge 
for improving the prognosis for patients with pancreatic 
ductal adenocarcinoma (PDAC). Genetically, only four 
non-targetable genes (KRAS, TP53, CDKN2A, SMAD4) 
are known to be recurrently mutated in PDAC so far. 
Many low frequency alterations found in various genes 
reflect a remarkable inter- and intra-individual tumor 
heterogeneity [1–3]. Despite major advances in defin-
ing the genomic landscape of PDAC, the inherent and 
acquired resistance mechanisms during tumor evolution 
and upon therapeutic perturbations remain a consider-
able challenge.

Oncogenic KRAS mutations represent a therapeutic 
target in PDAC. Although inhibitors directed against 
specific oncogenic KRAS mutations such as KRAS G12C 
and G12D as well as newly developed pan-RAS inhibi-
tors are recent exciting developments in the therapeutic 
armamentarium, their clinical benefit in PDAC remains 
to be proven. Potent and specific inhibitors for the 
downstream effector mitogen-activated protein kinase 
(MAPK) signaling pathway exist, including highly selec-
tive inhibitors against MEK, a component of the MAPK 
pathway [4]. However, despite promising results in pre-
clinical model systems [5–7], MEK inhibitors  (MEKi) 
have failed in clinical trials due to rapid induction of 
resistance [8–11]. Several cellular processes including 
mitochondrial function, nucleotide synthesis, protective 
autophagy or the deregulation of YAP, SHP or ERBB have 
been reported to be involved in  MEKi resistance [12–19]. 
However, their clinical relevance and the underlying reg-
ulatory circuits still remain to be identified.

Growing evidence supports a concept where tumor 
cells utilize epigenetic mechanisms to adapt to varying 
conditions, including  MEKi treatment of PDAC [20–22]. 
Mutations affecting epigenetic readers and writers such 

as enzymes controlling histone modifications and DNA 
methylation are frequently found in PDAC and other 
cancers [1, 23, 24].

In this study, we focus on longitudinal characterization 
of molecular alterations underlying  MEKi resistance. We 
combine multi-omics technologies on the genetic, epige-
netic, transcriptomic and protein levels in primary genet-
ically engineered mouse model (GEMM)-derived PDAC 
cells, thereby minimizing inter-individual genetic and 
epigenetic heterogeneity typically confounding patient-
derived tumor analyses. We address adaptive epigenetic 
changes under therapeutic pressure and identify a vul-
nerability of  MEKi-induced resistant PDAC cells to DNA 
methyltransferase inhibitors  (DNMTi). We found adap-
tive DNA hypermethylation in cells that acquired  MEKi 
resistance and characterized its dynamics upon drug 
withdrawal.

Results
MEKi resistance in PDAC is reversible upon drug 
withdrawal
To model  MEKi resistance in PDAC, we used primary 
low-passage cells derived from spontaneous PDAC of ten 
different Ptf1awt/Cre;  Kraswt/LSL−G12D;  Trp53loxP/loxP mice, 
which develop aggressive and therapy-resistant tumors 
resembling key aspects of human PDAC [25, 26].

All primary cells lines (n = 10) were sensitive to  MEKi 
with an IC50 in the low nanomolar range (5.44  nM to 
41.91 nM, median 12.70 nM) (Additional file 3: Table S2). 
To induce  MEKi resistance, cells were treated with 
increasing trametinib doses over 3 to 4 months until 
they proliferated at 100-fold of the original IC50 dose 
(Fig.  1A). Resistance induction was successful in all 10 
cell lines (Fig. 1B and Additional file 2: Fig. S1) and was 
accompanied by a strong block of ERK phosphorylation, 
underpinning the specificity of trametinib and suggesting 

(See figure on next page.)
Fig. 1 Acquired  MEKi resistance is reversible after drug withdrawal. A Timeline of resistance formation and drug withdrawal classified by different 
passages (P) without constant  MEKi treatment. B Bars represent the mean of two (na = two replicates in parental, three in resistant) or three 
independent cell viability measurements after 72 h in 300 nM  MEKi ± standard deviation (SD). DMSO controls were performed for both the parental 
and the resistant cells and used for normalization. Statistics was calculated by a two‑tailed unpaired Student’s t test on the  log2 transformed 
DMSO‑normalized values. C ERK phosphorylation in parental compared to  MEKi resistant cell states assessed by Simple Western analysis (p < 0.0001, 
two‑tailed paired Student’s t test on the  log2 transformed ratios). The respective electropherograms and the derived recalculated images are 
shown in Additional file 2: Figs. S2 and S3. D Resistance reversibility upon drug withdrawal. The mean of three independent experiments after 72 h 
incubation ± SD is shown for cell line #3 as representative example. E Principal component analysis of RNA‑seq data between parental (dark 
blue), resistant (red) and reverting (P5 and P12; light blue) cell states. Depictions in 2D are displayed in Additional file 2: Fig. S3. F Hierarchical 
clustering of significantly differentially expressed genes (adjusted p value < 0.01; log2 fold change > 1 or < − 1) between parental versus the union 
of resistant, P5, P12 and resistant versus the union of parental, P5, P12. G Principal component analysis of all abundances identified by LC‑MS 
with more than one unique peptide. 2D presentations are shown in Additional file 2: Fig. S3. H–J Differentially expressed proteins determined 
by LC‑MS between resistant and parental (H) or P12 (I) as well as between parental and P12 cells (J). Larger dots (blue and red) indicate significance 
(FDR < 0.05, log2 fold change < ‑1 or > 1) in ANOVA and post hoc test between the indicated groups and at least 2 unique peptides. Gray dots 
represent abundances only identified by 1 unique peptide. K Euler diagram summarizing the mass spectrometry results. Numbers indicate 
significantly different abundances of proteins per comparison identified with more than 1 unique peptide
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a drug efflux independent resistance mechanism (Fig. 1C 
and Additional file 2: Figs. S2 and S3). To study the effect 
of drug withdrawal, one batch of resistant cells from each 
line was cultivated without  MEKi and samples were col-
lected after 5 (P5) and 12 passages (P12) of drug with-
drawal (Fig.  1A). Thereby a reversibility of the resistant 
phenotype was observed correlating with the duration of 
drug-free time (Fig. 1D).

We compared the expression profiles associated with 
acquired  MEKi resistance by performing RNA-sequenc-
ing (RNA-seq) of six matched parental, resistant and 
reverting cell states. Results of principal component 
analysis (PCA) over all expressed genes showed that the 
reverting states (P5 and P12) had a transcriptional profile 
more similar to the parental cells (Fig. 1E and Additional 
file 2: Fig. S4A,B). The inter-individual variability between 

Fig. 1 (See legend on previous page.)
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cell lines explained a considerably smaller proportion of 
the transcriptional variation than treatment. We then 
performed supervised hierarchical clustering based on 
genes differentially expressed in parental or resistant cells 
(Fig.  1F). The resulting dendrogram showed that some 
reverting cells clearly grouped with the parental cells 
while the expression signature of other reverting cells 
was more similar to the resistant cells. A similar grouping 
could be observed on the protein level measured by mass 
spectrometry (Fig.  1G and Additional file  2: Fig.  S4C,D 
and Additional file  1: Table  S3). Concordantly, 168 pro-
teins were significantly differentially expressed between 
parental and resistant cells, while only 34 proteins dif-
fered between parental and P12 cells (Fig.  1H,I). Fur-
thermore, 105 of the 168 differently expressed proteins 
between parental and resistant cells also varied between 
P12 and resistant cells, thus supporting the reversibility 
of the  MEKi resistant phenotype not only on the mRNA 
but also on the protein level (Fig. 1J,K).

MEKi resistance is characterized by EMT and a PDAC 
subtype switch
Global gene expression profiling revealed that resist-
ant cells were significantly enriched (false discov-
ery rate (FDR) = 0.005, normalized enrichment score 
(NES) = 1.73) for transcripts involved in epithelial-mes-
enchymal transition (EMT) indicating a phenotypic 
switch from an epithelial to a more mesenchymal cell 
state (Fig. 2A). On the protein level, we found a decreased 
expression of the epithelial marker CDH1 (Fig. 2B,C and 
Additional file  2: Fig.  S5) and a strong increase of the 
mesenchymal marker CDH2 (Fig.  2D,E and Additional 
file  2: Fig.  S6) confirming EMT specific features of the 
resistant cells. We performed hierarchical clustering 
based on the expression of known PDAC subtype-specific 
genes [27–29]. Using the gene set defined by Bailey et al. 
[27], the parental cells were clearly separated from the 
resistant cells (Fig. 2F). Using gene sets defined by Collis-
son et al. [28] and Moffitt et al. [29], parental cells of line 
#9 grouped together with the resistant cells (Additional 
file 2: Fig. S7A,B). Concordantly, cell line #9 showed the 
highest IC50 and was, based on its lack of CDH1 already 
in the parental state, the most mesenchymal line in our 
cohort, which highlights the association of  MEKi resist-
ance with a mesenchymal phenotype.

We defined gene sets based on the mentioned sub-
type-specific genes and performed Gene Set Enrichment 
Analysis. All three classical/pancreatic progenitor sub-
type-defining gene sets were significantly (FDR < 0.001, 
NES < − 1.8) enriched in the parental cells (Fig. 2G).

Including the reverting cell states P5 and P12 in the 
cluster analysis based on the Bailey et al. [27] metagenes, 
the clear separation of parental and resistant cells 

(except for line #9 as mentioned) remained unchanged 
(Fig. 2H). In the cases where RNA of P5 and P12 derived 
from the same cell line was sequenced, the two samples 
clustered together. The reverting samples either built 
a separate cluster adjacent to the parental or the resist-
ant samples indicating transcriptional changes in the 
subtype-defining genes after drug withdrawal. Similar 
results were obtained by cluster analyses using the Mof-
fitt et al. [29] or Collison et al. [28] data sets (Additional 
file  2: Fig.  S7C,D). Furthermore, the protein expression 
of CDH1 recovered in P5 and P12 apart from cell line #9 
which had a poor CDH1 expression even in the paren-
tal cells (Fig. 2I). In contrast, the expression level of the 
mesenchymal-associated protein CDH2 decreased in the 
absence of  MEKi in the culture medium (Fig. 2J).

Taken together, our data support a phenotypic switch 
correlating with  MEKi susceptibility and the presence or 
absence of the drug in the culture medium. Resistant cells 
in the presence of  MEKi seem to be most mesenchymal.

Whole genome sequencing‑based mutation analysis 
of  MEKi resistant cells
Genetic and non-genetic alterations may contribute to 
the development of a resistant phenotype [30]. To deter-
mine whether genetic alterations were associated with 
 MEKi resistance, we performed whole genome sequenc-
ing (WGS) of two matched pairs of parental and resist-
ant cell states with a median coverage of 40x. Compared 
to their treatment-naïve counterparts, resistant cells 
of lines #3 and #9 harbored 3657 and 3204 unique sin-
gle nucleotide variants (SNVs), respectively. These vari-
ants are referred to as ‘variant present in resistant’ (VpR) 
(Fig. 3A,B; Additional file 1: Tables S4 and S5). A smaller 
number of variants was present in the parental cells, but 
could not be detected in the resistant cells (‘variant pre-
sent in parental’, VpP) (131 in cell line #3 and 837 in cell 
line #9). Less than 1% of the VpRs were located in the 
coding regions (CDS) (36 in #3 and 23 in #9) (Additional 
file  1: Tables  S4 and S5). Of these, 25 (cell line #3) and 
19 (cell line #9) were nonsense or missense mutations, 
respectively (Additional file 1: Tables S4 and S5).

SIFT prediction to assess the impact of these VpRs 
revealed 12 and 9 possibly deleterious variants for cell 
lines #3 and #9, respectively (Fig. 3A,B, Additional file 1: 
Tables  S4 and S5). The putative variant effect supposed 
by Jannovar [31] was moderate for those classified as 
deleterious by SIFT. None of them were found in both 
cell lines nor affected the same genes. None of the genes 
affected by the VpRs are known to be involved in the 
RAS-dependent  MEKi targeted MAPK or in the phosph-
oinositide 3-kinase (PI3K) pathway. In accordance, none 
of the mutant genes was listed in the COSMIC database 
to confer therapy resistance to human cancer cells. In 
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addition to SNVs, InDels were called. However, we found 
none of the genes affected to be involved in re-activa-
tion or bypassing of the MEK pathway (Additional file 1: 

Tables S4 and S5). Overall, we did not identify any genetic 
variant that might explain the resistant phenotype.

Fig. 2 MEKi resistance is accompanied by a phenotypic switch. A GSEA of RNA‑seq from parental compared to resistant cells revealed enriched 
hallmarks of EMT. B–E Significantly decreased CDH1 (B) and increased CDH2 (D) protein expression assessed by Simple Western (p < 0.05, two‑tailed 
paired Student’s t test on the log2 transformed ratios) and corresponding immunofluorescence of one representative example (cell line #3) (C, 
E). Either CDH1 (green) or CDH2 (orange) were stained together with DAPI (blue) nuclear staining (scale bars: 50 μm). F Hierarchical clustering 
of parental and resistant cells based on the metagenes for the pancreatic progenitor and the squamous subtype as defined by Bailey et al. [27]. 
G GSEA of metagenes defining the pancreatic progenitor or the classical subtype as defined by Bailey et al. [27] (left), Moffitt et al. [29] (middle) 
or Collisson et al. [28] (right). H Hierarchical clustering like in (F) including P5 and P12 samples. I, J Normalized CDH1 (I) or CDH2 protein expression 
(J) in four matched parental, resistant, P5 and P12 samples measured by Simple Western, respectively

(See figure on next page.)
Fig. 3 MEKi resistance is based on clonal expansion, while reversion upon drug withdrawal is independent of a parental outgrowth. A, B Circos 
plots displaying VpRs or VpPs in cell lines #3 (A) and #9 (B). Genes predicted as deleterious by SIFT are named. C, D Kernel density estimation (kde) 
for the VAF of VpRs in comparison with variants present in parental and resistant (VpPRs) for cell line #3 (C) or #9 (D). E, F Density plot for the VAF 
of VpRs in resistant compared to P12 in cell line #3 (E) or #9 (F). Only A > T and T > A variants called by WGS and validated by WGBS are shown. G 
Model of cell population dynamics during gain and loss of  MEKi resistance in PDAC
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Fig. 3 (See legend on previous page.)



Page 7 of 22Godfrey et al. Clinical Epigenetics           (2024) 16:13  

Whole genome sequencing reveals clonal expansion 
during acquired  MEKi resistance
We next addressed whether  MEKi resistance evolves by 
expansion of a subclone from the parental cells. There-
fore, the distribution of the allele fraction of all variants 
found in resistant cells only (VpRs) was analyzed reveal-
ing a variant allele fraction (VAF) peak at around 0.25 
in both cell lines (Fig.  3C,D). A potential explanation 
is the presence of this SNVs on one allele on a genetic 
background of four alleles, e.g., in cells with tetraploidy 
as consequence of genome duplication. Polyploidization 
can be found in approximately 50% of human PDAC [32]. 
By performing a cytogenetic analysis of metaphase chro-
mosomes, we found in median 77 and 70 chromosomes 
per cell in parental cells of lines #3 and #9, respectively, 
which is in concordance with a near tetraploid karyo-
type (Additional file 3: Table S6). Evaluation of the VAF 
per chromosome revealed a lower chromosome count for 
chromosomes 9, 12 or 13 of cell line #3 or chromosomes 
5 or 19 of #9 with VAF peak > 0.25, (Additional file  2: 
Fig. S8A,B). Taken together, the observed VAF distribu-
tion peak at 0.25 in these nearly tetraploid cells suggests 
that the cells with acquired  MEKi resistance are the result 
of clonal expansion of a single cell clone. Furthermore, 
most VpRs must have occurred after the incomplete 
genome duplications.

We next investigated whether a small proportion of 
parental cells that do not carry the VpRs might have 
survived the  MEKi treatment and then overgrown the 
VpR-containing resistant cells upon drug withdrawal. 
Therefore, we evaluated the VpR and VpR allele fractions 
in whole genome bisulfite sequencing (WGBS) data avail-
able for parental, resistant and reverting (P12) cells. Due 
to cytosine conversion by bisulfite modification, only a 
subset of 354 or 279 VpRs and 10 or 36 VpPs were avail-
able for further evaluation in cell lines #3 and #9, respec-
tively. Nearly all VpRs were present in P12 cells with a 
VAF distribution similar to the resistant cells (Fig. 3E–G 
and Additional file  2: Fig.  S8C,E). Furthermore, all 
but 2 VpPs were absent in P12 cells (Additional file  2: 
Fig. S8D,F). Thus, despite rebounding  MEKi susceptibil-
ity, the resistant genotype persists in P12 cells.

Overall,  MEKi resistance is based on clonal expan-
sion of a single cell clone, without evidence for muta-
tions or structural variation in genes that could mediate 
 MEKi-induced resistance. Loss of resistance upon drug 
withdrawal does not occur by outgrowth of parental cells.

MEKi resistance is associated with DNA methyltransferase 
inhibitor sensitivity
To address the potential involvement of epigenetic mech-
anisms in transcriptional variability, we applied a tar-
geted drug screening approach addressing key epigenetic 

regulators including chromatin readers, histone modifi-
ers and DNA methyltransferases in  MEKi-resistant cells. 
We found a strong effect of the  DNMTi decitabine on the 
viability of resistant but not parental cells (Fig.  4A–C). 
The difference was by far more pronounced compared to 
inhibitors of other epigenetic regulators such as bromo-
domain and extracellular terminal (BET) proteins, class 
I-specific or pan-histone deacetylases (HDAC), suggest-
ing that  MEKi-induced formation of resistance involves 
critical changes in DNA methylation (Fig.  4A,B). In 
resistant cells, a synergistic effect of  MEKi and  DNMTi 
was observed even at low doses of  DNMTi. Synergism in 
the parental cells was only observed at high  DNMTi con-
centrations (Fig. 4D,E and Additional file 2: Fig. S9A−F).

In addition, we investigated the effect of  MEKi and 
 DNMTi inhibition using a human in  vivo setting. We 
treated three different PDX models with either  MEKi, 
 DNMTi or a combination of both and observed a syn-
ergistic effect in all three models (Fig. 4F and Additional 
file 2: Fig. S9G,H).

MEKi resistance is associated with DNA hypermethylation
To assess  MEKi treatment-induced alterations in 
genome-wide DNA methylation, we performed whole 
genome bisulfite sequencing of two cell lines, each at four 
different states: parental, resistant and reverting cells at 
P5 and P12. Overall gene body and promotor methylation 
levels between all four cell states remained unchanged 
(Fig. 5A). Here, we defined regions as differentially meth-
ylated (DMRs) if at least four consecutive cytosine-gua-
nine dinucleotides  (CpGs) showed a minimal difference 
in methylation level of 0.4 in both cell lines. Thereby, 
2191 DMRs relatively equally distributed over all chro-
mosomes were found when comparing parental and 
resistant cells (Fig. 5B,C and Additional file 1: Table S7). 
These DMRs covered a total of 38,031 CpGs with a mean 
CpG content per DMR of 17 (min = 4, max = 178) and an 
average length of 794  bp (min = 12  bp, max = 4157  bp) 
(Additional file 1: Table S7). Remarkably, more than 96% 
of these DMRs were hypermethylated in the resistant 
cells (Fig.  5D). The nucleotide sequence of the majority 
of 1756 DMRs was conserved in humans based on the 
UCSC liftover tool corresponding to a degree of con-
servation > 76% (Fig. 5E and Additional file 1: Table S7). 
43.37% were located in ocean areas of the genome, while 
39.25% and 6.12% were present in the CpG island flank-
ing shores and shelves, respectively. Only 8.26% of all 
DMRs overlapped with a CpG island (Fig. 5F). However, 
the association of CpG island-related regions was signifi-
cantly higher in the DMRs compared to the mm10 refer-
ence genome (p < 0.001; chi-square test). Approximately 
one third (29.53%) of the DMRs was located in intergenic 
regions, while the others were present in intragenic, 
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predominantly intronic regions (65.95%) (Fig.  5G). The 
intragenic fraction in the DMRs was significantly higher 
than in the whole mm10 reference genome (p < 0.001; 
chi-square test).

In summary, we identified extensive hypermethylation 
following acquired  MEKi resistance, supporting epige-
netic plasticity in our model system.

A DMR subset reverts upon  MEKi withdrawal
We next addressed the question if DMRs involved in 
 MEKi resistance may revert upon drug withdrawal 
(Fig.  6A). We identified 217 DMRs, from here on 
referred to as reverting DMRs, whose methylation sta-
tus correlated with  MEKi sensitivity at all stages ana-
lyzed (Fig.  6B,C and Additional file  1: Table  S7). This 
correlation was further supported by the observation 
that the degree of methylation in P5 cells with interme-
diate resistance phenotype was always between the value 
of the resistant cells and the P12 cells (Additional file 2: 
Fig. S10A,B).

We validated a set of 15 selected DMRs in four addi-
tional cell lines in parental, resistant and P12 states 
using targeted deep amplicon bisulfite sequencing [33]. 
Ten out of 15 DMRs were differentially methylated 
between parental and resistant cells in at least two of 
four cell lines used for validation. In addition, eight of 
these 10 DMRs showed a reverting DNA methylation 
in the P12 state (Fig. 6D and Additional file 1: Fig. S11). 
In particular, the DNA methylation levels of reverting 
DMRs in cell lines #3 and #9 remained at P12 levels or 
below even after 40 passages under  MEKi withdrawal 
(Fig. 6E and Additional file 2: Fig. S11).

Comparing various features of reverting and non-
reverting DMRs, we found the proportion of hypometh-
ylated DMRs to be the same in both groups (Fig.  6F). 
The number of human-mouse conserved DMRs was 
slightly lower in the reverting DMRs (Fig. 6G). Revert-
ing DMRs were more frequently located in the ocean 
than non-reverting DMRs (80.18% vs. 42.65% in non-
reverting DMRs), while they were underrepresented 

Fig. 4 DNA methyltransferase inhibition effectively targeted  MEKi resistant cells only. A, B Cell viability screen using inhibitors that target different 
epigenetic mechanisms in parental (A) or resistant cells (B). Dose response curves for cell line #3 determined after 72 h using the CellTiter‑Glo® 
cell viability assay are shown. C The IC50 of  DNMTi was significantly lower in six matched pairs of parental versus resistant cells (two‑tailed paired 
Student’s t test). D, E Synergy analysis of  MEKi plus  DNMTi using the Loewe method of the Combenefit software shown for cell line #3 parental 
(D) and resistant (E). F Growth curves of PDX treated with  MEKi,  DNMTi or the combination. Solid lines represent the mean tumor volume of three 
mice per treatment group ± standard error of the mean (SEM). Statistical significance versus control was determined using a two‑tailed unpaired 
Student’s t test
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in shores (Fig.  6H). Notably, none of the reverting 
DMRs overlapped with a CpG island. In exonic regions, 
reverting DMRs were less frequent (0.92%) compared 
to non-reverting DMRs (4.91%) (Fig. 6I).

In silico evaluation of regulatory relevance of reverting 
DMRs
To investigate the potential relevance of the reverting 
DMRs, we analyzed their co-localization with microRNA 
(miRNA) target regions, VISTA enhancers and transcrip-
tion factor binding sites (TFBS) as annotated by Ensembl. 
(Fig.  7A and Additional file  1: Table  S7). Compared to 
randomly selected regions with similar length and CpG 
content, only TFBS were significantly enriched in all 2191 

DMRs and even more pronounced in the 217 reverting 
DMRs (Fig. 7B).

The activity of regulatory elements is highly tissue- as 
well as context-specific and their deregulation is often 
observed in cancer. Therefore, we aligned the identified 
DMRs with sequences reported to represent open chro-
matin (assay for transposase-accessible chromatin and 
sequencing; ATAC-seq) or potential active enhancer 
sites (chromatin immunoprecipitation and sequenc-
ing (ChIP-seq) for H3K27ac) in murine pancreas cells 
[34]. These data were obtained from murine organoids, 
similar to our model, derived from PDAC of KPC mice 
(Kraswt/LSL−G12D;  Trp53wt/LSL−R172H;  Pdx1-Cre). We found 
that 28.5% of all 2191 DMRs overlapped with ATAC-seq 

Fig. 5 Whole genome bisulfite sequencing revealed DMRs mainly hypermethylated in  MEKi resistant cells. A Mean gene body methylation levels 
in parental, resistant, P5 and P12 cell states of cell lines #3 and #9. TSS indicates the transcription start site and TES the transcription end site. B 
Mean methylation levels of all DMRs and their flanking regions (± 2 kb) in the four indicated cell states of two different cell lines (#3, #9). S indicates 
the DMR start and E its end. C Circos plot indicates the chromosomal location of 2191 DMRs between two parental and resistant cell lines (circle A). 
A scoring function was developed to define 217 reverting DMRs whose methylation pattern in P12 resembles that of parental cells (circle B). Circle 
C displays 15 DMRs that were validated by targeted deep bisulfite sequencing. D Proportion of DMRs hypo‑ or hypermethylated in resistant cells. 
E Degree of mouse‑human DMR‑sequence conservation according to the UCSC liftover tool. F, G Relative location of DMRs on bp level in relation 
to CpG islands (F) or genes (G) both compared to the mm10 reference genome (p < 0.001; chi‑square test)
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Fig. 6 Distinct DMRs revert after  MEKi withdrawal A Representative Integrative Genomics Viewer snapshot of reverting DMR_1716 in the parental 
(dark blue), resistant (red), P5 (light blue) and P12 (blue) cell states of cell lines #3 and #9 (upper row and lower row, respectively). 13 of 16 CpGs 
are shown. B Mean methylation levels of the reverting DMRs and their 2 kb up‑ and downstream regions of cell lines #3 and #9 in the parental, 
resistant, P5 and P12 cells (S: Start DMR; E: End DMR). C Methylation pattern of 217 reverting DMRs divided into hypo‑ (blue) and hypermethylated 
(red) regions. D Methylation pattern of DMR_929 in four independent cell lines compared to the WGBS samples based on the average methylation 
b‑value in the region. E–H Comparison of reverting and non‑reverting DMRs based on methylation change in resistant cells (E), sequence 
conservation in human (F) and their relative location to CpG islands (G) or genes (H)

(See figure on next page.)
Fig. 7 Functional relevance of DMRs and DNA methylation in  MEKi resistance. A Percent of DMRs overlapping with the indicated feature. B TFBS 
were significantly enriched in all as well as in reverting DMRs compared to  106 random regions of similar length and CpG count (** significance 
level < 0.01; * significance level < 0.05). C Percent of DMRs that overlap with an ATAC‑seq or ChIP‑seq H3K27ac peak found in at least 2 organoids 
by Roe and co‑workers [34]. D, E Enrichment for ATAC‑seq (D) or H3K27ac (E) peaks relative to  106 random regions of similar length and CpG 
count (*** significance level < 0.001; ** significance level < 0.01). F Venn diagram of reverting DMRs’ overlap with TFBS and/or H3K27ac peaks. G 
Enrichment of TFBS for the indicated transcription factors in the 217 reverting DMRs compared to 1974 non‑reverting DMRs. H Enrichment of TFBS 
motifs from the homer database between the reverting DMRs and random background sequences. I NES of AP1 related gene expression signatures 
that are significantly (FDR < 0.25) different between parental and resistant cells based on GSEA of RNA‑seq data. J Enrichment plot of the AP1_Q6 
gene expression signature
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Fig. 7 (See legend on previous page.)
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peaks, which comprise only about 0.8% of the genome, 
while 3% of the genome, but 69.3% of all DMRs over-
lapped with H3K27ac ChIP-seq peaks (Fig. 7C and Addi-
tional file  1: Table  S7). Thus, DMRs were significantly 
enriched for open and/or active (H3K27ac histone occu-
pied) chromatin regions compared to random regions of 
similar length and CpG content (Fig. 7D,E). In both cases, 
this enrichment was even more pronounced for revert-
ing DMRs. More than 90% of TFBS-containing revert-
ing DMRs overlapped with a H3K27ac-marked region, 
which underlines their potential regulatory relevance in 
 MEKi-resistant PDAC cells (Fig. 7F).

Using two independent enrichment analysis tools, we 
found that binding motifs for proteins belonging to the 
activator protein 1 (AP1) family were among the top 
enriched TFBS (Fig.  7G,H). It is well documented that 
AP1 binding to its respective motif is strongly depend-
ent on the methylation status of its recognition site and 
proximity [35, 36]. AP1 is a protein dimer formed by 
members of the JUN, FOS and ATF families. Notably, 
JUN was among the proteins regulated in  MEKi-treated 
PDAC cells. Resistant cells displayed both an increased 
total protein expression and enhanced JUN phosphoryla-
tion at Ser73 (Additional file 2: Figs. S12 and S13). Fur-
thermore, different AP1/JUN expression signatures were 
enriched in the parental cell lines (Fig. 7I,J).

In conclusion,  MEKi resistance is associated with DNA 
hypermethylation at regulatory elements including TFBS 
and active enhancer sites located in open chromatin. 
We identified the AP1 transcription factor complex as 
a potentially crucial factor in mediating  MEKi-induced 
resistance. Overall, our data show a key relevance of DNA 
methylation for maintaining  MEKi resistance in PDAC, 
which results in a remarkable  DNMTi vulnerability.

Discussion
PDACs are characterized by a remarkable resistance to 
virtually all therapeutic strategies. Several aspects chal-
lenge the unraveling of underlying mechanisms [37]. A 
key limitation of studies in advanced PDAC is the lack 
of longitudinal sample acquisition in individual treated 
patients due to anatomical, ethical, and logistical reasons 
among others.

Here, we utilized a cell culture model based on low-
passage primary cells derived from tumors of a geneti-
cally engineered PDAC mouse model [25] to analyze 
molecular changes that arise under MEK inhibition. 
The use of tumor cell populations with the same genetic 
background minimizes the influence of confounding fac-
tors such as inter- individual heterogeneity or contami-
nating non-tumor cells, the latter being a major concern 
when using primary PDAC tumor tissue. Consequently, 
our model cannot account for non-tumor cell intrinsic 

mechanisms such as involvement of the tumor microen-
vironment [38]. However, the observation that we were 
able to induce  MEKi resistance in all ten cell lines sug-
gests that, at least in our model system, resistance forma-
tion is mediated by tumor cell intrinsic mechanisms.

Using WGS, we clearly demonstrate that the resist-
ant cell clones evolve from a single precursor cell in the 
parental cell population. It is not possible to distinguish 
whether the genetic variants observed in the resistant 
cells were already present in the parental cells or arose 
during  MEKi treatment or a combination of both. The 
observed clonality strongly indicates that the parental 
cell population is composed of cells with different abili-
ties to adapt to  MEKi treatment with single cells having 
the potential to develop a resistance phenotype.

In a human PC-9 lung cancer model, Hata et al. [39] 
compared gefitinib resistant cells harboring a resist-
ance-mediating EGFR mutation with resistant cells 
that expanded under treatment without such muta-
tions. Gefitinib-resistant EGFR mutant PC-9 cells 
had a similar transcriptional profile to their parental 
gefitinib-naive cell pool [39]. In contrast, transcrip-
tomic differences found between our mouse parental 
and  MEKi- resistant cells were also described for PC-9 
cells without EGFR resistance mutation [39]. Further-
more, it took about four months from the onset of drug 
exposure to a fully  MEKi-resistant cell population [39]. 
This is a similar time frame to that observed for the 
PC-9 lung cells without a known resistance-mediating 
EGRF mutation [39]. Whereas PC-9 cell pools harbor-
ing an EGFR resistance-mediating mutation, devel-
oped resistance within 6 weeks [39]. Given the similar 
proliferation rates of cells in our PDAC mouse model 
and the PC-9 cells, this argues against a mutation in a 
classical resistance gene as underlying cause of  MEKi 
resistance. Consistently, using WGS we did not detect 
mutations in genes involved in re-activation or bypass-
ing of the targeted MAPK pathway in the resistant 
cells. Although this approach cannot definitively rule 
out the presence of such mutations, it provides clues 
for the presence of alternative mechanisms that con-
fer  MEKi resistance to cells. This is further supported 
by the observation that cells lose their resistance phe-
notype during drug withdrawal without re-gaining the 
parental genotype. As it is unlikely that the formation 
of resistance is a direct consequence of mutations in 
genes involved in drug resistance, we hypothesize that 
the predisposition of the originating cell could be due 
to an epigenetic plasticity that enables it to adapt better 
to the environmental conditions than other cells, e.g., 
by DNA methylation changes. Whether this plasticity 
is the consequence of sequence alterations already pre-
sent in the parental cell or due to stochastic epigenetic 
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variation remains to be determined. An example for an 
epigenetic factor contributing to phenotypic adaptation 
upon drug treatment is described in a study by Wang 
et al. [21] showing that modulation of histone methyla-
tion is involved in  MEKi resistance.

Our hypothesis of a cell clone capable of epigenetically 
adapting to  MEKi treatment is further supported by the 
association of transcriptional plasticity with  MEKi resist-
ance. The resulting EMT and the switch to a more mes-
enchymal phenotype reflect the quasi-mesenchymal/
basal-like subtype of PDAC [27–29]. EMT is known to 
be linked to stemness that enables tumor cells to develop 
drug resistance [39, 40]. Cells with mesenchymal proper-
ties have been reported to be less sensitive to  MEKi treat-
ment than epithelial ones43. It is tempting to speculate 
that, these properties allow cells a comprehensive modu-
lation of their methylome, which normally only occurs 
during development or cell differentiation.

As DNA methylation is an important epigenetic media-
tor already known to be involved in the progression of 
PDAC or other tumors, as well as the formation of distant 
metastases, we determined DNA methylation changes in 
our PDAC model [41]. To our knowledge, we provide the 
first WGBS dataset of therapy-resistant PDAC, albeit in 
murine cells, which provides an unbiased and compre-
hensive view at the dynamic changes of the methylome in 
cells in response to drug exposure and subsequent drug 
withdrawal. The differentially methylated regions showed 
a high degree of conservation between the mouse and 
human genome and overlapped with known regulatory 
elements like TFBS and potential enhancer sites, which 
supports their functional relevance in gene regulation. 
We could also identify a subset of reverting DMRs whose 
gain and loss of methylation reflected gain and loss of 
the resistant phenotype. Among these reverting DMRs, 
binding sites for the dimeric transcription factor complex 
AP1 were significantly enriched. Its DNA hypermethyla-
tion, as present in the resistant cell states, is known to 
prevent AP1 binding [35, 36].

It is a matter of debate if DNA methylation changes 
are causally involved in the regulation of gene expres-
sion or if they develop downstream of transcription fac-
tor- mediated gene regulation [42]. Interestingly, the DNA 
methylation changes that occur during drug exposure 
and resistance formation are almost exclusively DNA 
hypermethylation events. Such de novo methylation of 
previously unmethylated CpGs depend on the activity of 
methyltransferases DNMT3A und DNMT3B. Therefore, 
blocking de novo methylation could prevent or impede 
the formation of  MEKi resistance in PDAC cells or pri-
mary tumors. Indeed, the synergistic effect of combined 
 MEKi and  DNMTi treatment observed in resistant PDAC 
cells strongly suggest that  MEKi resistance is attenuated 

by decitabine treatment. Decitabine is an inhibitor that 
blocks the activity of both de novo methyltransferases and 
of the maintenance methyltransferase DNMT1. It will be 
interesting to evaluate if drug resistance in general is asso-
ciated with DNA hypermethylation or if this observation 
is restricted to MEK inhibitors in PDAC cells.

Conclusions
Overall, our results of a  MEKi adaptive DNA hypermeth-
ylation landscape of regulatory regions in a single cell 
clone support epigenetic plasticity of tumor cells as a 
driver in PDAC therapy resistance (Fig. 8). The remark-
able  DNMTi sensitivity of the  MEKi resistant cells might 
inspire new combinatory therapeutic approaches to over-
come therapy resistance in PDAC.

Methods
Generation of primary murine PDAC cell lines
Tumor pieces derived from Ptf1awt/Cre;  Kraswt/LSL−

G12D;  Trp53loxP/loxP mice were incubated at 37°C and 
5%  CO2 in high-glucose Dulbecco’s Modified Eagle’s 
Medium (DMEM) (Thermo Fisher Scientific) contain-
ing 10% fetal bovine serum (Thermo Fisher Scientific), 
1% penicillin/streptomycin (Thermo Fisher Scientific), 
and 1% non-essential amino acids (Sigma-Aldrich) until 
tumor cells emigrated. PCR-based mycoplasma testing 
was performed on a regular basis. Cell lines #1, #3, #4, #5 
and #8 were derived from male mice and cell lines #2, #6, 
#7, #9 and #10 from female mice. All cell lines used are 
available from the corresponding author upon reasonable 
request.

MEKi resistance induction in primary murine PDAC cell line
MEKi resistance was induced in ten different low-passage 
cell lines (< 4–12 passages). Therefore, cells were treated 
with increasing doses of trametinib (LKT) until they grew 
in 100 × of their IC50 (800 nM to 4200 nM trametinib). 
One batch of each cell line was cultivated with 100 × IC50 
of trametinib in the culture medium (termed resistant 
hereafter) with medium exchange every 2–3 days on a 
regular basis. Another batch was kept under drug with-
drawal and samples were named according to their pas-
sage number in drug-free medium (Px).

Cell viability assays
Cell viability assays were performed with four to six dif-
ferent cell lines. Cell numbers were optimized for 80% 
confluency in 96- or 384-well plates, respectively. Drugs 
targeting different epigenetic modifiers (trametinib 
(LKT), decitabine (Sigma-Aldrich), JQ1 (Cayman), 
suberoylanilide hydroxamic acid (SAHA) (Selleckchem), 
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mocetinostat (Selleckchem) dissolved in dimethyl sulfox-
ide (DMSO) (Sigma-Aldrich) were printed in the indi-
cated logarithmic concentration ranges using the D300e 
Digital Dispenser (Tecan). The DMSO concentration in 
each well was adjusted to the highest value on the plate 
which was set to < 0.1% of the assay volume. Sealed plates 
were frozen at − 80 °C until use.

Cells were detached by 0.05% trypsin—ethylen-
ediamine tetraacetic acid (EDTA) (1x) (Thermo Fisher 

Scientific) and recovered by centrifugation. Optimized 
cell numbers for 80% confluency at the end of experi-
ment were seeded with the Multidrop Combi Dispenser 
(Thermo Fisher Scientific) onto the pre-printed plates 
and incubated at 37°C and 5%  CO2.

Cell viability was determined using the CellTiter-Glo® 
Luminescent Cell Viability Assay (Promega) according to 
manufacturer’s instruction. The luminescence signal was 

Fig. 8 Model of cell population dynamics and associated cellular alterations in  MEKi resistance of PDAC. (TF: transcription factor, TFBS: transcription 
factor binding site)
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measured with a Tecan Spark® 10 M multiplate reader 
(Tecan) for 500 ms.

Data were normalized to the signal of DMSO treated 
cells. IC50 determination was performed using the Graph 
Pad Prims v.  7.03 ‘log (inhibitor) vs. response (three 
parameters)’ equation.

Synergism was analyzed by applying the Loewe [43] 
method implemented in Combenefit v. 2.02 [44].

Extraction of total protein and Simple Western analysis
For total protein isolation, RIPA buffer (Cell Signaling 
Technology) containing protease- and phosphatase-
inhibitor cocktails (Sigma-Aldrich) was used to lyse 
Dulbecco’s phosphate-buffered saline (DPBS)-washed 
(Thermo Fisher Scientific) cell pellets on ice for 20 min. 
To remove debris, lysates were centrifuged at 4  °C and 
full-speed for 10 min. Afterward, the protein concentra-
tion was determined with the Pierce BCA Protein Assay 
Kit (Thermo Fisher Scientific).

If nothing else indicated, 0.2  mg/ml protein per 
12–230  kDa capillary were used in a Simple Western 
analysis using the Wes instrument (ProteinSimple) as 
suggested by the manufacturer’s protocol. Antibod-
ies against the following proteins were used in the indi-
cated dilutions: CDH1 (#3195, Cell Signaling Technology, 
1:1000 for 0.1  mg/ml protein), CDH2 (NBP1-48,309, 
Novus Biologicals, 1:100), ERK1/2 (#4695, Cell Sign-
aling Technology, 1:50), HSP90 (sc-7947, Santa Cruz, 
1:250 for 0.05 mg/ml and 0.2 mg/ml protein or 1:500 for 
0.1 mg/ml protein), JUN (#9165, Cell Signaling Technol-
ogy, 1:50), p-JUN (#9164, Cell Signaling Technology, 1:5), 
p-ERK1/2 (#4376, Cell Signaling Technology, 1:15), Vin-
culin (#13,901, Cell Signaling Technology, 1:30,000).

Immunofluorescence
Murine cell lines grown to 80% confluency on chamber 
slides were fixed for 20  min in 4% paraformaldehyde 
(PFA) and permeabilized using 0.3% triton for 10 min at 
room temperature. After blocking in 5% BSA, the follow-
ing primary antibodies were incubated for 1  h at room 
temperature: CDH1 (#3195, Cell Signaling Technology, 
1:100), CDH2 (610,920, BD Bioscience, 1:200).

Fluorescent-labeled secondary antibodies (Thermo 
Fisher Scientific) were diluted 1:1000 and incubated 
together with 4′,6-diamidino-2-phenylindole (DAPI) for 
1 h at room temperature protected from light.

Microscopy of the mounted slides was performed at 
an Axio Observer.Z1 (Carl Zeiss) using the indicated 
magnifications.

Cytogenetic analysis
Parental cells of cell lines #3 and #9 were treated with 
colcemid for 4  h prior to harvest. Culture solution was 

centrifuged; the cell pellet was resuspended in a hypo-
tonic 75  mM KCl-solution and incubated for 20  min at 
37  °C. After centrifugation, cells were resuspended by 
dropwise adding 8 ml of an ice-cold fixative solution (3:1 
mixture methanol and acetic acid). Cells were washed 3 
times in 8  ml ice-cold fixative solution for 10 min each 
and dropped onto a fat-free and watered glass slide that 
was then air-dried overnight at 60  °C. Chromosomes 
were stained with Giemsa and examined under the 
microscope using 140 × magnification.

Patient‑derived xenografts
Already established patient-derived xenografts of pancre-
atic adenocarcinoma from three different male patients 
at passage number 2 were received from ARC-NET, Uni-
versity of Verona. At the time of surgery, patient 1 was 59 
years old, patient 2 65 years and patient 3 53 years. Mice 
were maintained in the pathogen-free animal facility fol-
lowing institutional guidelines and with approval from 
the responsible authorities. The animals were housed 
under pathogen-free conditions in individually venti-
lated cages under standardized environmental conditions 
(22°C room temperature, 50 ± 10% relative humidity, 12 h 
light–dark rhythm). They received autoclaved food and 
bedding (Ssniff) and acidified (pH  4.0) drinking water 
ad libitum.

Tumor pieces of 3   mm3 were transplanted subcutane-
ously into NOD/SCID-mice with knocked IL2γ receptor 
(NSG mice) within 24 h after explant from donor mice. 
Remaining tumor tissue was preserved in DMSO or 
snap-frozen for later propagation or analyses. Engrafted 
tumors at a size of about 1   cm3 were surgically excised 
and fragments of 2–3  mm3 re-transplanted into immune 
deficient NMRI:nu/nu mice for further passage. Tumors 
were passaged not more than 10 times.

For drug screening studies, tumor material was 
implanted subcutaneously into appropriate cohorts 
of NMRI:nu/nu mice (n = 3 per treatment group). At 
advanced tumor size (200   mm3), mice were randomized 
and treated with 1 mg/kg trametinib (p.o., daily), 0.2 mg/
kg decitabine (s.c., three times weekly). To further mouse 
cohorts, the combinations of trametinib and decitabine 
were applied. Tumor size was measured with a caliper 
instrument and monitored during the entire experi-
ment with the measurements of two perpendicular 
tumor diameters using the spheroid equation: tumor vol-
ume = [(tumor width)2 × tumor length] ×  0.5. Treatment 
was continued over a period of two weeks unless tumor 
size exceeded 10% of animal body weight or animals 
showed loss of more than 15% body weight. Six hours 
after last treatment animals were sacrificed and tumor 
samples preserved for further analyses.
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Mass spectrometry
Sample preparation
Cell pellets of parental, resistant and P12 cells of six dif-
ferent lines were resuspended in 100  μl 50  mM ammo-
nium bicarbonate and 0.1% sodium deoxycholate 
(NaDOC) for cell lysis. Samples were sonicated on ice for 
10 min and centrifuged (16,000 g, 15 min, 4°C). Protein 
concentration was determined via Bradford assay. Due 
to a very low concentration, technical replicates were 
pooled. The samples were ridded of remaining viscosity 
with 10 impulses at 5% power by ultrasonic homogeni-
zation via Sonopuls HD 200 MS 72 (Badelin) and cen-
trifuged (16,000  g, 15  min, 4°C). Protein amount was 
determined via amino acid analysis. DTT (5  mM) was 
added to the sample for reduction (30  min, 60°C), fol-
lowed by iodoacetamide (15 mM) for alkylation (30 min, 
room temperature, in the dark). Lysed proteins were 
tryptically digested over night at 37°C (trypsin/protein 
ratio 1/24). For acidification, trifluoroacetic acid (TFA) 
(0.5%) was added (30  min, 37°C), samples were cen-
trifuged (10  min, 16,000  g) for removal of NaDOC and 
supernatant transferred to glass vials, dried in a vacuum 
centrifuge, and dissolved in 0.1% TFA. A sample amount 
corresponding to 275  ng was used for one liquid chro-
matography tandem mass spectrometry (LC–MS/MS) 
measurement.

LC–MS/MS parameters
LC–MS/MS analysis was performed on a LTQ Orbit-
rap Elite instrument (Thermo Fisher Scientific) coupled 
online to an upstream-connected Ultimate 3000 RSLC-
nano high-performance liquid chromatography system 
(Dionex). Samples were measured in a shuffled manner. 
Peptides dissolved in 0.1% TFA were pre-concentrated on 
a C18 trap column (Acclaim PepMap 100; 100 μm × 2 cm, 
5  μm, 100  Å; Thermo Fisher Scientific) within 7  min at 
a flow rate of 30  μl/min with 0.1% TFA. Peptides were 
then transferred to an in-house packed C18 analytical 
column (ReproSil®-Pur from Dr. Maisch HPLC GmbH, 
Ammerbuch, Germany, 75  μm × 40  cm, 1.9  μm, 120  Å). 
Peptides were separated with a gradient from 5 to 40% 
solvent B over 98 min at 300 nl/min and 65°C (solvent A: 
0.1% formic acid; solvent B: 0.1% formic acid, 84% ace-
tonitrile). Full-scan mass spectra in the Orbitrap analyzer 
were acquired in profile mode at a resolution of 60,000 
at 400  m/z and within a mass range of 350–2000  m/z. 
MS/MS spectra were acquired in data-dependent mode 
at a resolution of 5,400. For MS/MS measurements, the 
20 most abundant peptide ions were fragmented by col-
lision-induced dissociation (normalized collision energy 
(NCE) of 35) and measured for tandem mass spectra in 
the linear ion trap.

Protein identification and quantification
Proteins were identified with Proteome Discoverer 
v. 1.4 (Thermo Fisher Scientific). Spectra were searched 
against the UniProtKB/Swiss-Prot database (Release 
2018_11; 53,780 entries) using Mascot v.  2.5 (Matrix 
Science, London, UK). Taxonomy setting was Mus mus-
culus, and mass tolerance was 5 ppm and 0.4 Da for 
precursor and fragment ions, respectively. Dynamic 
and static modifications were considered for methio-
nine (oxidation) and cysteine (carbamidomethyl), 
respectively. The FDR was calculated with the Pro-
teome Discoverer Target Decoy PSM Validator func-
tion, and identifications with a FDR > 1% were rejected. 
The software Progenesis QI v. 2.0.5387.52102 (Nonlin-
ear Dynamics) was used for label-free quantification. 
The obtained raw files were aligned to a reference run 
and a master map of common features was applied to 
all experimental runs to adjust for differences in reten-
tion time. Ion charge states of 2 + , 3 + , and 4 + with a 
minimum of three isotope peaks were considered, and 
raw ion abundances were normalized for automatic 
correction of technical or experimental variations 
between runs. Quantified features were identified using 
the obtained Proteome Discoverer identifications. All 
non-conflicting peptides were considered for protein 
quantification.

Statistics
Normalized protein abundances were obtained from 
Progenesis and analyzed by applying ANOVA followed 
by Tukey’s honest significant difference (HSD) method. 
Fold changes between groups were determined based 
on normalized abundances, while ANOVA was cal-
culated using arcsinh-transformed data for consist-
ency with the Progenesis QI software. The FDR was 
controlled by adjusting ANOVA p values using the 
method of Benjamini and Hochberg [45]. For proteins 
with adjusted ANOVA p values below the significance 
level of α = 0.05, the TukeyHSD method was applied to 
further characterize the identified differences in abun-
dance levels between groups. Proteins were considered 
differentially abundant between groups with a  log2 fold 
change ≥ 1 or ≤ − 1 and an adjusted p value < 0.05.

Isolation of nucleic acids
DNA and RNA were isolated using the Maxwell® RSC 
Cultured Cells DNA and the Maxwell® RSC simplyRNA 
Cells Kit (Promega) according to manufacturer’s instruc-
tion. Nuclease-free water was used for DNA elution.
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RNA‑sequencing
Sequencing
RNA-sequencing of parental, resistant and P12 cells of 
six different cell lines was performed by CeGaT (Tübin-
gen). In addition, P5 cells of cell lines #3, #7 and #9 were 
sequenced. For library preparation, the TruSeq Stranded 
mRNA Kit (Illumina) was used with 100  ng input RNA 
and 2 × 100  bp were sequenced on a HiSeq 4000 (Illu-
mina) or a NovaSeq 6000 system (Illumina).

Read processing and quantification
Demultiplexing of the sequencing reads was performed 
with Illumina CASAVA v. 2.17 or bcl2fastq v. 2.19. Adapt-
ers were trimmed with Skewer v. 0.1.116 or 0.2.2 [46].

Transcripts were quantified using the quasi-mapping 
approach of salmon v. 0.12 [47]. TXImport v. 1.6 [48] and 
DESeq2 v. 1.18 [49] were used to import transcript-level 
counts, convert them to gene-level counts and perform 
differential expression analysis between all four cell states 
(parental, resistant, P5, P12). Results were multiple test-
corrected by the Benjamini–Hochberg method.

Principal component analysis
Principal component analysis (PCA) was performed on 
the normalized gene-level counts of all expressed genes.

Hierarchical clustering
Hierarchical clustering of significantly differentially 
expressed genes (Benjamini–Hochberg adjusted p 
value < 0.01;  log2 fold change > 1 or  log2 fold change < − 1) 
between parental versus the union of resistant, P5, P12 
and resistant versus the union of parental, P5, P12 was 
computed by the ward.D2 method. Additionally, the 
same method was used to cluster samples based on 
PDAssigner genes [28] or PDAC subtype associated 
genes defined by Bailey et. al. [27] and Moffitt et al. [29].

Gene set enrichment analysis
GSEA [50] was performed using default settings and gene 
set permutation.

Score to define reverting Transcripts
In order to identify differentially expressed genes that 
show a similar expression pattern in parental and P12 
samples, a score was defined based on the  log2 fold 
change between parental/P12 and resistant samples.

The score was defined as follows:

s =

0 if− 1 < log2 FC(P,R) < 1
0 if log2 FC(P,R) · log2 FC(P12,R) < 0

max(| log2 FC(P,R)|,| log2 FC(P12,R)|)
min(| log2 FC(P,R)|,| log2 FC(P12,R)|)

otherwise

where log2FC(A,B) describes the  log2 fold change between 
A and B. Genes were only considered if the  log2 fold 
change between parental and resistant cell state was rea-
sonably large.

Whole genome bisulfite sequencing
Sequencing and alignment
Whole genome bisulfite sequencing (WGBS) of parental, 
resistant and P12 cells of cell lines #3 and #9 was performed 
at the Genomics and Proteomics Core Facility of the Ger-
man Cancer Research Center (GPCF DKFZ, Heidelberg) 
using the TruSeq DNA PCR-free Methyl protocol (Illu-
mina) for library preparation. A HiSeq X machine (Illu-
mina) was used for 150 bp paired-end sequencing. Reads 
were mapped using bwa-meth v. 0.2.0 [51] on the GRCm38 
assembly with added PhiX genome as a sequencing control.

Calculation of methylation levels
CpG methylation levels were computed using an in-
house script filtering reads with a mapping quality < 30 
and bases with base quality < 17.

Differentially methylated region detection
The BSmooth algorithm of bsseq v.  1.10 [52] was used 
to detect DMRs between parental and resistant samples 
common both for cell line #3 and #9, with every DMR 
containing a minimum of four CpGs and a minimum dif-
ference in methylation level of 0.4.

Nearest genes
For each DMR, the nearest flanking genes were deter-
mined by finding the nearest TSSs to each region using 
BEDTools closest v. 2.27 [53].

Integration with RNA‑seq data
Expression changes of the two nearest genes of every 
DMR were assessed from RNA-sequencing data as 
described above. Genes with a  log2 fold change > 1 were 
defined as upregulated in resistant cells, those with a  log2 
fold change < − 1 as downregulated in resistant cells.

Genomic regions
The localization of DMRs relative to genes and CpG 
islands was performed using BEDTools intersect v.  2.27 
(Quinlan and Hall, 2010). Reference data were taken 
from Ensembl build 93 [54] (genes) and the UCSC data-
base (CpG islands).
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Reference data for shore and shelf regions were created 
using BEDTools flank v. 2.27 [53]; shores were defined as 
regions up to 2000 bp away from CpG islands and shelfs 
as regions up to 2000 bp away from shores.

To test for significance of the association between the 
genomic regions and the DMRs compared to the mm10 
reference genome (GCF_000001635.20), the chi-square 
test was applied.

Methylation score to define reverting DMRs
A score was used to model the methylation changes 
between parental, resistant and P12 cells, where 
scores > 0.5 indicate that the P12 methylation is closer to 
the parental level, scores < 0.5 indicate the P12 methyla-
tion is closer to the resistant level.

where �(A,B) describes the difference in methylation 
between A and B. A cut-off of 0.44 (90% quantile) was 
used to define DMRs as reverting.

Conservation
The UCSC liftOver tool was used together with the 
mm10ToHg38 liftOver chain in order to identify regions 
in the human genome that are associated with the murine 
DMRs. The minimum ratio of bases that need to remap 
to define a region as valid liftOver was set to 0.5.

Regulatory regions
Overlaps between DMRs and transcription factor binding 
sites, miRNA target regions and VISTA enhancers were 
computed using BEDTools intersect v. 2.27 [53]. Reference 
data were taken from the Ensembl regulation build 93 [54].

The findMotifsGenome script from homer v.  4.9 
was used in order to find enrichment of known bind-
ing motifs from the homer library [55]. The script was 
used with standard parameters (-size 200 -cpg) on the 
GRCm38 assembly, comparing reverting DMRs to ran-
dom background sequences.

Overlap with chromatin marks from PDAC organoids
Organoid data available from Roe et  al. [34] were used 
to check whether DMRs overlap with open chromatin or 
enhancer regions.

Analysis was performed on the following organoids.
H3K27ac-ChIP-seq:

• N5, N6—normal pancreatic organoids [56]
• T3, T6, T19, T23, T33, T34—tumor organoids

s =















0, if�(P,R) ·�(P,P12) < 0

1, if�(P,R) ·�(R,P12) < 0

|�(P,P12)|

|�(P,R)|
, otherwise

ATAC-seq:

• N5, N6—normal pancreatic organoids [56]
• T3, T6, T23—tumor organoids

Reads were aligned with BWA-MEM v.  0.7.17 [57] 
against the GRCm38 genome. Duplicate reads were fur-
ther removed using Samtools v. 1.9.

Identification of ChIP-seq and ATAC-seq peaks was 
performed using MACS2 v. 2.1.2 [58, 59] callpeak func-
tion with default settings. Resulting narrowPeak files 
were further merged with BEDtools merge v.  2.27 [53] 
and overlapped with the DMRs using BEDtools inter-
sect to analyze how many peaks from tumor and normal 
organoids are located within the DMRs separately for 
H3K27ac ChIP-seq and ATAC-seq peaks.

Enrichment analysis
In order to detect possible enrichment of TFBS as well 
as ATAC-seq and ChIP-seq peaks in DMRs compared to 
the remaining genome, every DMR was matched with 1 
million randomly picked genomic regions with similar 
length and CpG count. The occurrence of the features 
of interest was then compared between DMRs and the 
average of the randomly chosen regions. The occurrence 
of the features of interest was then compared between 
DMRs and the average of the randomly chosen regions. A 
feature was defined as significantly enriched if its occur-
rence in the DMRs was larger than in the average of 
random regions in at least 95%, 99% or 99.9% of all com-
parisons (significance level < 0.05, < 0.01 or < 0.001).

Targeted deep bisulfite sequencing
Targeted deep bisulfite sequencing was performed as 
described elsewhere [33]. DMRs for validation were 
selected based on the following criteria: Proportion of 
hypermethylated DMRs reflects that of identified DMRs 
(> 90%), reversion in P12, conserved in humans, preferen-
tially DMRs with at least one flanking transcript showing 
reverted expression in P12. Primer sequences are listed 
in Additional file 3: Table S1. The MiSeq (Illumina) run 
was conducted by the BioChip-Laboratory of the Essen 
University Hospital. Amplikyzer2 v.  1.2.0 was used for 
analysis. Due to the much higher coverage compared to 
WGBS, DMRs were classified as positively validated at a 
minimum methylation difference of 0.2.

Whole genome sequencing
Sequencing and genome mapping
The Genomics and Proteomics Core Facility of the Ger-
man Cancer Research Center (GPCF DKFZ, Heidelberg) 
performed the library preparation for WGS of paren-
tal and resistant cells of cell lines #3 and #9 as well as a 
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control tail samples corresponding to line #3 with the 
TruSeq DNA PCR-free Kit (Illumina) and the 150  bp 
paired-end sequencing on a HiSeq X (Illumina).

Reads were aligned to the mouse reference genome 
GRCm38 using BWA-MEM v.  0.7.15 [57] with default 
settings. Duplicate reads were marked with sambamba 
v. 0.6.5 [60].

Variant calling
Variants and small insertions and deletions (InDels) were 
called in a two-step process. First, candidate variants 
were called using freebayes v. 1.1.0 [61] with parental and 
resistant tumor samples as well as a normal tail tissue.

In a second step, variants were validated and readjusted 
using Varlociraptor v.  1.1.1 [62]. The validated variants 
were separated into different groups according to their 
change in VAF between parental and resistant samples. 
Variants were defined as present in parental (VpPs) if 
they drop to a VAF of 0 from parental to resistant. Vari-
ants with a VAF > 0.1 in resistant and a VAF of 0 in paren-
tal were defined as present in resistant (VpRs). Variants 
with a VAF > 0 in both parental and resistant tumor sam-
ples were defined as present in parental and resistant 
(VpPRs).

VpPs and VpRs were validated in P5 and P12 tumors 
using the available WGBS data. Since the technical differ-
ences between WGBS and WGS affect the comparability 
of results from both methods, validation was performed 
solely on WGBS samples. VAFs in WGBS samples were 
called using Varlociraptor v.  1.1.1 [62], with VpPs and 
VpRs from WGS as candidate variants. To adjust for 
bisulfite conversion, only A > T and T > A variants cov-
ered > 15 × were kept for WGBS validation.

Data management and annotation
Snakemake v.  5.10 [63] was used as workflow manage-
ment system for the complete computational analysis.

Data management and visualization was performed 
using bcftools v.  1.9 [64] and python v.  3.7 libraries 
seaborn v. 0.9 and pandas v. 0.24.

Variants were annotated using Jannovar v.  0.25 [31] 
with the GRCm38 annotation database as well as SIFT 
scores (Ng and Henikoff, 2003) (Download source: http:// 
sift. bii.a- star. edu. sg/ sift4g/ publi c// Mus_ muscu lus/ 
GRCm38. 83. zip).

To compare SNV positions between both mouse lines, 
the closest variant positions between both variant calls 
were identified using BEDtools closest v. 2.27 [53].

Statistics
Replicates were performed as indicated in the figure leg-
ends. For statistical analyses R v. 3.6.0 [65] and GraphPad 
Prism v. 7.03 were used. The applied test is described in 
the figure legends, respectively.
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