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of methylation‑based cfDNA detection of tissue 
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Abstract 

Background  Detecting organ and tissue damage is essential for early diagnosis, treatment decisions, and monitoring 
disease progression. Methylation-based assays offer a promising approach, as DNA methylation patterns can change 
in response to tissue damage. These assays have potential applications in early detection, monitoring disease progres-
sion, evaluating treatment efficacy, and assessing organ viability for transplantation. cfDNA released into the blood-
stream upon tissue or organ injury can serve as a biomarker for damage. The epigenetic state of cfDNA, includ-
ing DNA methylation patterns, can provide insights into the extent of tissue and organ damage.

Content  Firstly, this review highlights DNA methylation as an extensively studied epigenetic modification that plays 
a pivotal role in processes such as cell growth, differentiation, and disease development. It then presents a variety 
of highly precise 5-mC methylation detection techniques that serve as powerful tools for gaining profound insights 
into epigenetic alterations linked with tissue damage. Subsequently, the review delves into the mechanisms underly-
ing DNA methylation changes in organ and tissue damage, encompassing inflammation, oxidative stress, and DNA 
damage repair mechanisms. Next, it addresses the current research status of cfDNA methylation in the detection 
of specific organ tissues and organ damage. Finally, it provides an overview of the multiple steps involved in identify-
ing specific methylation markers associated with tissue and organ damage for clinical trials.

Summary  This review will explore the mechanisms and current state of research on cfDNA methylation-based assay 
detecting organ and tissue damage, the underlying mechanisms, and potential applications in clinical practice.
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Introduction
Detecting organ and tissue damage is crucial for timely 
diagnosis and effective treatment of various diseases and 
conditions. Early detection of tissue damage can allow 
for prompt intervention, which can prevent further dam-
age and potentially improve outcomes [1, 2]. Monitor-
ing disease progression can also help inform treatment 
decisions and allow for adjustments as necessary [3, 4]. 
Additionally, evaluating treatment efficacy can help 
determine if interventions are effective and inform deci-
sions about continuing or modifying treatment plans [5, 
6]. Finally, in transplantation medicine, detecting tissue 
damage is critical for assessing the viability of organs for 
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transplantation and ensuring successful outcomes for 
recipients [7, 8]. In previous research, histopathological 
examination of tissue slices has often been considered 
the “gold standard” for detecting tissue and organ dam-
age [9]. However, this method is highly invasive and is 
not suitable for the early screening of tissue and organ 
damage.

CpG sites are a specific region on DNA, named after 
the presence of a C (cytosine) and a guanine nucleo-
tide, connected by a phosphodiester bond. These sites 
are widely distributed throughout the human genome 
and are crucial for gene expression and genome stabil-
ity [10–12]. In numerous studies, the methylation sta-
tus of CpG sites has been closely associated with the 
onset and development of human diseases. DNA meth-
ylation is also altered in response to tissue damage [13]. 
Methylation-based assays offer a promising approach for 
detecting organ and tissue damage [14]. Epigenetic analy-
sis, based on methylation patterns in DNA, involves the 
study of DNA methylation patterns to detect signs that 
may reflect tissue damage or disease-related changes. 
These testing methods possess a high degree of specific-
ity and sensitivity, and can be applied to various sample 
types, including blood, urine, and tissue biopsies, facili-
tating non-invasive data collection and greatly advancing 
early diagnosis of tissue damage [15–17]. Methylation-
based assays are being investigated for a range of appli-
cations, from early detection and monitoring of disease 
progression to evaluating treatment efficacy and assess-
ing organ viability for transplantation [18, 19].

Liquid biopsy, especially circulating cfDNA (cell-free 
DNA) methylation analysis in plasma, may become a 
promising non-invasive diagnostic method in tissue 
damage detection [20]. The collection of blood or body 
fluid samples is a non-invasive procedure that does not 
require tissue resection or tissue biopsy, thus avoiding 
the distress and risks of traditional tissue examination 
[21]. The majority of cfDNA fragments range from 80 to 
200  bp with a length corresponding to nucleosome size 
of 160–180  bp [22]. Tissue-of-origin deconvolution is a 
key technique in cfDNA methylation analysis, allowing 
scientists to determine the source or origin of cfDNA 
based on DNA methylation patterns [23]. This technique 
is based on a core concept: Different tissues and organs 
have unique epigenetic signatures in their DNA meth-
ylation profiles. Therefore, when these tissues or organs 
are damaged, such as due to cancer, trauma, or other dis-
eases leading to cell death, they release cfDNA into the 
bloodstream (Fig.  1A) [24, 25]. Scientists can analyze 
the DNA methylation patterns in these cfDNA samples 
and attempt to compare them with a reference database 
of known tissue-specific DNA methylation patterns. 

Through this comparison, they can deconvolve or deter-
mine the source tissue or organ of a given cfDNA sam-
ple [26]. The advantage of this technique is that it enables 
scientists to detect and monitor tissue-specific damage in 
a non-invasive manner, without the need for traditional 
tissue biopsies.

Hence, the release of epigenetic markers in the form 
of cfDNA into the bloodstream following tissue and 
organ damage, as illustrated in Fig.  1B, makes cfDNA a 
valuable biomarker for assessing tissue and organ dam-
age [27]. Furthermore, the epigenetic state of cfDNA, 
including DNA hypermethylation and hypomethylation 
patterns, can provide insights into the extent of tissue 
and organ damage [14]. Overall, the DNA methylation 
state of cfDNA can be used as a biomarker for tissue and 
organ damage. In this review, we will examine the under-
lying mechanisms involved, the current research status 
of cfDNA methylation pattern for detecting organ and 
tissue damage, as well as potential applications of these 
assays in clinical practice.

Epigenetics and DNA methylation
Eukaryotic gene expression is intricately regulated 
through numerous mechanisms, even when the DNA 
sequence remains unchanged. This phenomenon is 
known as epigenetics [28]. Epigenetic regulation involves 
various mechanisms, including DNA methylation, his-
tone modifications, and the influence of non-coding 
RNA, among others. Among these, DNA methylation is 
extensively studied [29].

In eukaryotes, DNA methylation involves adding a 
methyl group to the 5th carbon of C in DNA, catalyzed by 
DNA methyltransferases. This creates 5-mC (5-methyl-
cytosine), found mainly at CpG sites [30]. There are about 
28 million CpG sites in the human genome, but they 
are not evenly distributed. CpG sequences occur at only 
about 1% on average, but CGIs (CpG islands) are densely 
packed regions with more than five times the average 
frequency, typically defined as genomic regions over 200 
base pairs long, with over 50% GC content, and a CpG 
ratio exceeding 60% [31]. Over 60% of genes, including 
those with tissue-specific expression patterns, have CpG 
islands in their promoter regions and first exons [32].

In normal tissue genomes, about 70% of CpG sites are 
methylated, while most CpG islands remain unmethyl-
ated [33]. Some genes with CGIs are methylated, such 
as genes on the inactive X chromosome and imprinted 
genes [34]. Methylation plays a vital role in various bio-
logical processes, including cell growth, differentiation, 
X-chromosome inactivation, genomic imprinting, gene 
silencing, defense against foreign genes, and xenobiotic 
metabolism in multicellular organisms.
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Fig. 1  Sources of cfDNA. A The release of cfDNA into body fluids originates from tissues and organs, including blood, cerebrospinal fluid, and urine, 
among others. B Injured tissues and organs release cfDNA with altered methylation patterns into the bloodstream, which can be detected
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The study of epigenetic mechanisms holds immense 
significance in scientific research and medicine, enhanc-
ing our understanding of gene regulation, disease occur-
rence and inheritance, and the development of innovative 
therapies.

Mechanisms of DNA methylation change in organ 
and tissue damage
DNA methyltransferases (DNMTs) are a class of enzymes 
that play a crucial role in cells, regulating DNA meth-
ylation [35]. DNMTs are primarily responsible for add-
ing methyl groups to cytosine residues in DNA, forming 
5-methylcytosine, thereby achieving DNA methylation. 
DNMTs are capable of binding to DNA and identifying 
target DNA sequences, often CpG. Once DNMTs bind to 
the target DNA sequence, they transfer a methyl group 
from the SAM donor to the cytosine base in DNA. This 
process involves the formation of a covalent bond, add-
ing the methyl group to the fifth carbon atom of the 
cytosine base, resulting in 5-mC. DNMT1 (DNA methyl-
transferase-1) serves as a maintenance DNMT primarily 
tasked with upholding the stability of DNA methylation 
during DNA replication and cell division. DNMT1 can 
recognize newly synthesized unmethylated DNA strands 
and add methyl groups during DNA replication to ensure 
the correct inheritance of DNA methylation patterns in 
each generation of cells [35]. DNMT3A and DNMT3B 
are de novo DNMTs responsible for introducing new 
DNA methylation during cell differentiation and devel-
opment. These enzymes can introduce methyl groups 
into specific genes or genomic regions, thereby regulat-
ing gene expression and influencing cell function. DNA 
demethylation: In addition to DNMTs, DNA demethy-
lases like TET (ten–eleven translocation) enzymes are 
also crucial components of the dynamic balance of DNA 
methylation. TET enzymes can remove methyl groups 
from DNA, converting 5-mC into 5hmC (5-hydroxy-
methylcytosine), and participate in the DNA demeth-
ylation process [36]. AID (activation-induced cytidine 
deaminase) and AB (Apobec) are deaminases, typically 
associated with deamination of DNA bases and deoxy-
ribose modification, rather than directly participating in 
DNA methylation or demethylation reactions [37]. They 
function in altering DNA bases, such as converting cyto-
sine to uracil, without involving the addition or removal 
of DNA methyl groups [38]. TDG (thymine DNA gly-
cosylase) and SMUG1 (single-strand-selective mono-
functional uracil-DNA glycosylase 1) are two enzymes 
related to DNA repair, playing a crucial role in main-
taining the integrity of DNA bases and correcting base 
errors in DNA [37]. These enzymes introduce changes 
such as deamination or deoxyribosylation to DNA mol-
ecules, influencing DNA methylation status. Tissue and 

organ damage can regulate DNMTs and DNA demethy-
lases through various mechanisms, thereby influencing 
the state of DNA methylation, including inflammation, 
oxidative stress, and DNA damage repair mechanisms. 
These mechanisms can interact with each other to cause 
complex changes in DNA methylation patterns and lead 
to the continuation of damage and disease (Fig. 2).

Inflammatory response
After tissue and organ damage, the body initiates an 
inflammatory response to clear damaged cells and tissue, 
promoting repair and regeneration [39]. However, this 
inflammatory response may also cause changes in DNA 
methylation, as the inflammatory response can produce 
reactive oxygen species [40], nitrites, and other harm-
ful substances that can directly or indirectly affect DNA 
methylation. Inflammation also can activate immune 
cells, leading to the secretion of cytokines and other sign-
aling molecules that can alter DNA methylation patterns. 
For example, the IL-6 (cytokine interleukin-6) and STAT3 
(signal transduction and transcriptional activator 3) have 
been shown to increase the activity of DNMTs, leading 
to increased DNA methylation in certain genes [41, 42]. 
Excessive IL-15 (cytokine interleukin-15) has been shown 
to induce DNMT3b (DNA methyltransferase-3b) upreg-
ulation and global DNA hypermethylation in animal 
model [43, 44].

Oxidative stress
Tissue and organ damage may increase cellular oxidative 
stress due to the action of free radicals, peroxides, and 
other oxidizing agents released by damaged cells, which 
can damage DNA and alter the activity of enzymes that 
regulate DNA methylation. For example, oxidative stress 
can cause the oxidation of DNMTs, leading to change 
activity and altered DNA methylation patterns [45–48]. 
In a recent study on peripheral blood mononuclear cells 
of Graves patients, it was found that increased reactive 
oxygen species led to increased expression of DNMT1, 
which in turn was associated with abnormal methylation 
patterns of immunoregulatory genes that promote auto-
immunity in Graves disease [49]. Similarly, in studies of 
doxorubicin-induced cardiotoxicity, doxorubicin induces 
cardiac cell damage and oxidative stress, which produces 
free radicals and nitric oxide in response to stress. Oxi-
dative stress increases and down-regulates DNMT1 
enzyme activity and leads to mitochondrial dysfunction 
of DNA methylation [50]. Oxidative stress can also alter 
the activity of enzymes that remove methyl groups from 
DNA, such as TET enzymes, leading to changes in DNA 
methylation patterns. In a cell damage model constructed 
in the study of polycystic ovary syndrome disease, it has 
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been found that cell damage reduces the level of TET and 
leads to increased levels of cell methylation [51, 52].

DNA damage repair
DNA damage is a common consequence of tissue and 
organ damage, and DNA repair mechanisms are acti-
vated to repair the damage. The process of DNA repair 
can affect DNA methylation patterns, as some DNA 
repair enzymes can modify DNA methylation levels [53, 
54]. For example, the enzyme PARP1 (the enzyme poly 
(ADP-ribose) polymerase-1) is a nuclear enzyme involved 
in DNA repair, chromatin remodeling and gene expres-
sion, which can catalyze the removal of methyl genome-
wide chromatin [55]. The binding of PARP1 to chromatin 
genome-wide is mutually exclusive with DNA methyla-
tion pattern suggesting a functional interplay between 

PARP1 and DNA methylation [56]. In fact, inhibition of 
PARylation leads to genome-wide changes in DNA meth-
ylation patterns. DNA dioxygenase AlkB also can regu-
late the DNA methylation level, and AlkB can directly 
converts m3C and m1A into unmethylated bases by the 
mechanism of oxidative demethylation in the presence of 
Fe(II) ions, α-KG, and oxygen [57, 58]. In a study of blood 
diseases, B cells in germinal centers differentiate with the 
help of DNMT1, changing their DNA patterns in order 
to differentiate properly. DNMT1 has been shown to play 
a dual role in DNA methylation and double-strand break 
repair [59].

In summary, tissue and organ damage can cause 
changes in DNA methylation patterns through multiple 
mechanisms, which can interact with each other to cre-
ate complex changes in DNA methylation patterns.

Fig. 2  DNA methylation and demethylation mechanisms in organ and tissue damage. Tissue and organ damage can regulate DNMTs and DNA 
demethylases (e.g., TET and TDG) through various mechanisms, thereby influencing the state of DNA methylation, including inflammation, oxidative 
stress, and DNA damage repair mechanisms
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5‑mC methylation detection techniques
Researchers utilize various DNA methylation detection 
methods to study the methylation patterns in cfDNA, 
thereby understanding methylation changes in both 
healthy and disease states. These methods mainly encom-
pass a range of 5-mC methylation assays, which can be 
categorized as follows:

Methylation detection method without sequencing
Non-sequenced methylation detection methods typically 
do not involve DNA sequencing but instead rely on vari-
ous chemical or biological techniques to analyze DNA 
methylation status. Among these methods are restrictive 
enzyme digestion, which involves cleaving DNA at spe-
cific nucleotide sequences using methylation-sensitive 
enzymes, allowing for the study of DNA methylation. 
For instance, methods like von Kanel et  al.’s combin-
ing restriction enzyme digestion and real-time PCR or 
Xianfeng Wang et  al.’s CRISPR/Cas13a-based strategy 
enable precise assessment of methylation status and 
copy number changes at individual sites [60, 61]. Addi-
tionally, MSP (methylation-specific PCR) and other 
PCR-based approaches using bisulfite-treated DNA tem-
plates are sensitive and specific techniques for analyzing 
DNA methylation at specific sites, with MSP selectively 
amplifying methylated or unmethylated DNA sequences 
using methylation-specific primers [62]. These methods, 
including TaqMan-real-time FQ-MSP (TaqMan real-time 
methylation-specific PCR) and ddPCR (digital droplet 
PCR), offer high precision and sensitivity, making them 
valuable tools for the study of DNA methylation [63]. For 
example, MSP combined with ddPCR has been utilized 
in the detection of bile duct cancer markers in patients 
with primary sclerosing cholangitis [64]. Furthermore, 
HRM (high-resolution melting) is a method for detecting 
DNA methylation based on the distinct melting behav-
ior of methylated and unmethylated DNA fragments. 
HRM allows for qualitative and quantitative analysis of 
DNA methylation without the need for costly sequenc-
ing techniques, providing a rapid, high-throughput, and 
cost-effective approach widely used in DNA methylation 
research. The MS-HRM (methylation-sensitive high-
resolution melting) protocol by Wojdacz and Dobrovic 
can detect methylated templates in an unmethylated 
background with sensitivity comparable to MSP [65, 
66]. Lasse Kristensen et  al. also developed a probe-free 
quantitative MSP assay using HRM analysis for reliable 
detection, even at 0.1% methylated standards [67]. Addi-
tionally, methylation arrays such as Illumina’s HM450K 
(Illumina Infinium HumanMethylation450 BeadChip) 
and 850K (Illumina Infinium Methylation EPIC Bead 
Chip) offer cost-effective and high-throughput platforms 
for comprehensive methylation analysis, with HM450K 

targeting over 485,000 cytosine positions across the 
human genome and being widely used in cancer research 
[68, 69]. The newer 850K array extends coverage, includ-
ing additional probes targeting regulatory regions, but 
these arrays have limited genome-wide coverage and may 
not capture all methylation information [70].

Methylation detection method with sequencing
DNA methylation detection methods based on sequenc-
ing encompass a range of techniques used to study DNA 
methylation patterns. One widely used method is BSP 
(Bisulfite sequencing PCR), which combines PCR ampli-
fication with Sanger sequencing to identify methyla-
tion sites at individual CpG sites [71]. BSP comes in two 
forms: direct BSP, which directly sequences PCR prod-
ucts, and cloning BSP, which involves cloning PCR prod-
ucts into vectors for sequencing [72, 73]. However, BSP 
has limitations, such as sensitivity to low-level mosaicism 
and potential PCR-induced bias.

Another powerful technique is Pyrosequencing, which 
enables high-resolution and sensitive monitoring of 
DNA methylation in real time by quantitatively measur-
ing the incorporation of nucleotides [74], which makes 
it valuable for various research and clinical applications, 
including cancer prediction and repetitive element inves-
tigation [75, 76].

WGBS (whole-genome bisulfite sequencing) provides 
comprehensive and high-resolution genome-wide meth-
ylation information, but it comes with challenges such 
as complex data processing and substantial sequenc-
ing requirements [77, 78]. MCTA-seq (methylated CpG 
tandems amplification and sequencing), on the other 
hand, is a sensitive method capable of analyzing min-
ute genomic DNA amounts (as low as 7.5 pg), showing 
promise for non-invasive cancer screening [79]. However, 
it may require specialized equipment and offers limited 
coverage compared to whole-genome methods. Targeted 
bisulfite sequencing selectively amplifies specific genomic 
regions, combining the cost-effectiveness of methylation 
arrays with bisulfite sequencing’s digital signal output 
[80, 81]. It can be tailored for specific genes or regions 
but may require additional time and resources for probe 
design and synthesis [82]. RRBS (reduced representa-
tion bisulfite sequencing) is a cost-effective approach that 
focuses on CpG-rich regions and has enabled advance-
ments like scRRBS (single-cell RRBS), offering insights 
into tumor burden estimation and disease biomarker 
discovery [83, 84]. MeDIP-Seq (methylated DNA immu-
noprecipitation sequencing) reduces the required DNA 
input for methylation sequencing, making it suitable 
for cfDNA methylation detection [85, 86]. An extension 
of this method, cfMeDIP-seq (cell-free DNA-methyl-
ated DNA immunoprecipitation and high-throughput 
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sequencing), can be applied to various sample types with 
limited DNA availability, potentially extending its appli-
cations beyond cancer detection [87–90]. MBD-Seq 
(CpG methylation binding domain enrichment sequenc-
ing) uses MBD (methyl-CpG binding domain) proteins 
to selectively capture methylated DNA fragments, effec-
tively identifying and quantifying methylated regions, 
particularly in CpG-rich regions and CGIs [91, 92]. An 
ultra-low input cfDNA methylation analysis method, 
cfMBD-seq (cfDNA MBD-Seq), optimizes MBD capture 
conditions for use in various sample types [93].

Nanopore sequencing is a revolutionary technology 
that directly measures electrical current changes as DNA 
molecules pass through nanopores, enabling direct meth-
ylation detection without the need for chemical modifi-
cations [94, 95]. For example, ONT (Oxford Nanopore 

Technologies), a company that provides DNA sequencing 
platforms based on Nanopore technology [96, 97]. This 
technology offers advantages such as high throughput, 
high resolution, and single-molecule sequencing, making 
it valuable in various research and clinical applications, 
including cancer detection [98]. However, it has limita-
tions, including higher per-base cost and error rates for 
single-nucleotide variants and insertions/deletions [99, 
100]. PacBio sequencing, based on SMRT (single-mole-
cule real-time) technology, generates exceptionally long 
DNA read lengths, making it suitable for studying com-
plex genomes, structural variations, repetitive sequences, 
and epigenetic changes in repetitive elements [101, 102]. 
It is versatile in analyzing diverse genomes and DNA 
samples without GC or AT content preferences [103].

Table 1  cfDNA methylation markers of specific tissue and organ injury

Organ Disease Observations Detection method Sensitivity Specificity References

Liver Acute graft-versus-host disease PTK28 ddPCR 92.8% 91.0% [104]

Liver Hepatocellular carcinoma cg02396797, cg030646442, 
cg21178851

Bisulfite DNA sequencing 
and HM450K

35% 95% [27]

Liver Acute hepatocyte death ITIH4, IGF2R, VTN HM450K and ddPCR – – [105]

Colon Acute graft-versus-host disease SESN3 ddPCR 90.5% 98.9% [104]

Kidney Acute kidney injury KLK1 Pyrosequencing – – [106]

Kidney kidney transplant CALCA Fluorescence-based real-time 
PCR

– – [107]

Kidney Kidney transplant Absolute concentration of kid-
ney cfDNA

WGBS – – [108]

Heart Myocardial infarction CORO6 MCTA-seq and ddPCR 46% 80% [109]

Heart Open-heart surgery damage Cardiac cfDNA concentration Two-step multiplexed PCR 
and NGS

– – [110]

Heart Acute myocardial infarction FAM101A WGBS and MSP sequencing 
analysis and ddPCR

– – [111]

Lung Lung cancer and lung nodules cg19864007_cg22636429_
cg15542994, cg26970841_
cg03978375_cg24826867, 
cg04175417, cg21962423, 
cg23156742, cg06287318, 
cg21963643, cg07568344 
and cg12545252

Targeted methylation sequenc-
ing

– 93.2% [112]

Pancreas Diabetes Fbxl19, Mtg1, Leng8, Zc3h3, INS, 
INS antisense

HM450K and two-step multiplex 
PCR

– 70% [113]

Pancreas Diabetes CHTOP/INS HM450K and bisulfite DNA 
sequencing and ddPCR

– 100% [114]

Brain Oligodendrocyte cg26765599, cg20637405, 
cg25396488

Bisulfite DNA sequencing 
and HM450K

20.7% 95% [27]

Brain Neuron cg13131859, cg10030512, 
cg12560421, cg18519737

Bisulfite DNA sequencing 
and HM450K

17.2% 95% [27]

Brain Astrocyte cg22031783, cg01623475, 
cg01623475

Bisulfite DNA sequencing 
and HM450K

13.8% 95% [27]

Muscle Amyotrophic lateral sclerosis RHBDF2 Pyrosequencing and bisulfite 
cloning sequencing

– – [115]
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Research status of cfDNA methylation detection 
of specific tissue and organ injury
cfDNA methylation-based detection has great potential 
in the detection of tissue and organ damage, and further 
research in this field can provide new diagnostic and 
prognostic tools for various tissue and organ diseases. 
The following describes the current state of research of 
cfDNA methylation in the detection of tissue and organ 
damage in specific organ (Table 1).

Liver
Liver-derived cfDNA methylation-based assays have 
been used to detect liver damage in various contexts, 
including hepatitis B and C infections, non-alcoholic 
fatty liver disease, hepatocellular carcinoma, and liver 
transplantation. Miguel Waterhouse et  al. used digital 
droplet PCR to measure PTK28 gene-specific meth-
ylation markers in cfDNA to detect liver tissue damage 
in patients with acute graft-versus-host disease [104]. 
Thresholds to differentiate aGvHD (acute graft-ver-
sus-host disease) from non-aGvHD (non-acute graft-
versus-host disease) in liver 1.5 (sensitivity = 0.928; 
specificity = 0.910). And clinical improvement of liver 
damage aGvHD resulted in methylated PTK2B reduced 
concentration. In another study of cancer damage 
to host tissue, it was found that cell death in organs 
affected by cancer could be detected by tissue-specific 
methylation patterns of cfDNA. In the study of hepato-
cellular carcinoma, three liver tissue methylation-spe-
cific markers (cg02396797\cg030646442\cg21178851) 
were identified by Illumina Infinium 450k microbead 
array [27]. Patients with liver metastases exhibited 
higher levels of hepatocyte-derived cfDNA, measured 
either by the fraction of cfDNA derived from hepato-
cytes or the hepatocyte genome equivalents per mil-
liliter, compared to healthy donors, patients with local 
cancer, or patients with non-liver-metastatic disease. 
Using a cutoff of 561 (genome equivalents/mL) of liver-
derived specific cfDNA markers, the specificity and sen-
sitivity for detecting liver metastases and liver damage 
were 95% and 35%, respectively [27]. Moreover, hepat-
ocyte cfDNA levels were able to distinguish patients 
with stage 4 cancer with and without liver metastases 
(AUC = 0.81, 95% CI 0.73–0.89, P < 0.0001). Another 
study described a method for detecting acute hepato-
cyte death by identifying three genomic sites (ITIH4, 
IGF2R and VTN) that are specifically non-methylated 
in hepatocytes based on quantification of cfDNA frag-
ments carrying hepatocyte specific methylation patterns 
[105]. Blood samples from healthy individuals, liver 
transplant patients, liver donors, sepsis patients, and 
Duchenne muscular dystrophy were tested by ddPCR. 
The results showed that these three measurements of 

hepatocellular derived cfDNA can provide specific and 
sensitive information about hepatocellular death. It pro-
vides a near real-time indication of liver damage and 
can monitor liver damage dynamically.

Kidney
Methylation-based assays have been increasingly utilized 
to detect kidney damage and understand the underlying 
molecular mechanisms associated with kidney diseases. 
Hypermethylation of specific gene promoter regions 
has been observed in kidney patients. A study of human 
acute kidney injury, the methylation status of four sites 
in the promoter region of cfDNA KLK1 gene was evalu-
ated by pyrosequencing in urine and whole blood of 
healthy controls and acute kidney injury patients [106]. 
The results showed that the methylated KLK1 gene pro-
moter in blood and urine of AKI patients was higher 
than that of healthy controls in global genomic patterns, 
and P < 0.0001, indicating that KLK1 gene methylation 
has the potential to be a marker for monitoring kidney 
injury. In another study, abnormal methylation of two 
gene promoters (DAPK and CALCA) in the urine DNA 
of 13 deceased and 10 living kidney transplant recipi-
ents and 65 healthy controls was detected by quantita-
tive methylation-specific polymerase chain reaction on 
the second day after surgery, and CALCA was found in 
the urine of transplant recipients Gene promoters were 
significantly more likely to be abnormally hypermethyl-
ated than healthy controls (100% vs. 31%; P < 0.0001) 
[107]. CALCA hypermethylation was increased in urine 
of deceased patients compared with living donor trans-
plantation (21.60 ± 12.5 vs. 12.19 ± 4.7; P = 0.04). In addi-
tion, urine CALCA abnormal hypermethylation tended 
to increase in patients with biopsy-confirmed acute 
tubular necrosis compared with acute rejection and slow 
or rapid graft function (mean: 20.40 ± 6.9, 13.87 ± 6.49, 
17.17 ± 13.4; P = 0.67) (16.9 ± 6.2 and 18.5 ± 13.7; P = 0.5). 
These results suggest that urine DAPK and CALCA gene 
epigenetics is a promising method for kidney trans-
plantation of biomarkers of acute ischemic injury. In 
a study with kidney transplant patients, urine cfDNA 
was analyzed to understand the relationship between 
infections and kidney tissue damage [108]. The results 
showed that after transplant, urine absolute concentra-
tion of tissue-specific cfDNA increased due to stress 
damage but returned to baseline after 10  days without 
infection. For patients with nephropathy and BK virus 
infection, nephrogenic cfDNA levels were significantly 
higher than in normal patients or those with BK virus 
alone (P = 4 × 10−4, P = 7.9 × 10−3). Additionally, bladder 
and leukocyte cfDNA levels were elevated in patients 
with bacterial infections (AUC = 0.91), indicating a pos-
sible link between infection and tissue damage. And the 
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fragment size profile of cfDNA can provide an additional 
indicator by which patients with different symptoms of 
infection can be stratified. These findings suggest that 
analyzing cfDNA levels could improve our understand-
ing of kidney damage related to infections and potentially 
lead to better diagnostic tools and treatments.

Heart
cfDNAs methylation-based assays have been used to 
detect heart damage in various contexts, including 
open-heart surgery and MI (myocardial infarction). A 
new study evaluated six unmethylated sites of cfDNA 
molecules as markers of cardiac injury after open-heart 
surgery [110]. The six myocardial cell-specific DNA 
unmethylated markers were used to measure cardiac 
cfDNA in plasma of 42 infants undergoing open-heart 
surgery. Cardiac cfDNA was elevated after surgery, 
reflecting tissue damage directly associated with sur-
gery, and decreased in most patients after surgery. This 
study also used cardiac cfDNA levels to predict surgi-
cal outcomes, selected duration of mechanical ventila-
tion (greater than or less than 24 h) and maximum VIS 
(greater than or less than 20 h), and used ROC (receiver 
operating characteristics) curves as clinical outcomes. As 
a predictor of mechanical ventilation duration or maxi-
mum VIS, the AUC of cardiac cfDNA at 6 h after surgery 
was 0.7475 and 0.7555, respectively. Similarly, a cardio-
myocyte methylation marker (FAM101A) was identi-
fied in another study [111]. ddPCR was used to measure 
plasma cfDNA concentration of fully unmethylated 
FAM101A, which can sensitively and specifically detect 
cardiomyocyte injury. Clinical observations in sepsis 
patients have shown that the level of cardiac cfDNA is 
not significantly affected by kidney or liver damage [111]. 
Jie Ren et al. found that when myocardial damage occurs, 
cfDNA is released and identified six CGC​GCG​G loci that 
were located in the CGIs of CORO6, CACNA1C (two 
loci), OBSCN, CRIP1 and ZNF503-AS2, showing heart-
specific hypermethylation patterns [109]. Among these 
markers, CORO6 showed the most specific methylation 
pattern in the heart. As a result, they proceeded to inves-
tigate the development of a ddPCR assay for this specific 
locus. This assay effectively detected signals of heart 
damage in cfDNA from MI patients upon their admis-
sion to the hospital [109]. They therefore explored the 
development of a ddPCR assay for this locus that clearly 
detected heart damage signals in cfDNA of MI patients at 
hospital admission [109].

Lung
Lung organ specificity cfDNAs methylation-based assays 
have been used to detect lung damage in various con-
texts, including chronic obstructive pulmonary disease, 

lung cancer, lung nodules, and after bronchial testing. In 
2022 research, it determined the methylation status of 17 
loci with lung-specific methylation patterns, and used it 
to assess lung-derived cfDNA in the plasma of healthy 
volunteers and patients with lung disease [116]. The 
results showed universal cfDNA methylation markers of 
normal lung epithelium allow for mutation-independent, 
sensitive, and specific detection of lung-derived cfDNA, 
reporting on ongoing lung injury. Wenhua Liang et  al. 
developed a new non-invasive diagnostic method based 
on nine markers in cfDNA methylation analysis released 
by lung injury to detect early lung cancer and distinguish 
lung cancer from benign lung nodules and the model 
achieved a specificity of 93.2% [112]. The nine markers 
are cg19864007_cg22636429_cg15542994, cg26970841_
cg03978375_cg24826867, cg04175417, cg21962423, 
cg23156742, cg06287318, cg21963643, cg07568344, and 
cg12545252.

Brain
In the 2022 liquid biopsy study exploring collateral tis-
sue damage, 10 genomic sites were also identified that 
were unmethylated in neurons (cg13131859/cg10030512/
cg12560421/cg18519737), oligodendrocytes (cg26765599/
cg20637405/cg25396488), or astrocytes (cg22031783/
cg01623475/cg01623475) [27]. Signals from each brain 
cell type generate an ROC curve. Markers of each brain 
cell type were able to identify plasma from patients with 
brain metastases with an AUC of 0.72–0.81, with a 95% 
specific sensitivity of 17.2% for neuronal markers, 13.8% 
for astrocyte marker.

Pancreas
Methylated tissue studies have been able to locate spe-
cific cell types in organs, and cell damage can be detected 
by cfDNA methylation analysis. For example, in a study 
of plasma pancreatic beta cell-specific cfDNA, six spe-
cific biomarkers (Fbxl19, Mtg1, Leng8, Zc3h3, INS, INS 
antisense) were found to be completely unmethylated 
in 70% of beta cells [113]. The remaining 30% showed 
methylation with one or two CpG sites. And the study 
found that cfDNA methylation markers in pancreatic 
beta cells were significantly elevated after islet trans-
plantation, reflecting the damage and death of beta cells. 
Also, given the increased frequency of unmethylated 
INS CpG sites in beta cells, the ratio of unmethylated to 
methylated INS DNA released into circulation after cell 
death is thought to reflect beta cell death. Similarly, a 
study identified an intragenic CpG site within the gene 
encoding the chromatin target of PRMT1 (CHTOP), 
that exhibits complementary tissue specificity to INS 
and may be used to increase confidence of detecting islet 
damage in youth with prediabetes and diabetes [114]. 
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The specificity of the two unmethylated biomarkers 
combined was up to 100%.

Muscle
ALS (amyotrophic lateral sclerosis) is a progressive neu-
rodegenerative disease that causes the death of upper 
motor neurons and lower motor neurons. Currently, 
there is no established circulating biomarker for ALS. 
Therefore, it is difficult to monitor disease progression 
and effectively assess treatment response. The cfDNA 
provides an opportunity to measure ALS cell death that 
can fill these gaps. Plasma cfDNA was isolated from 20 
ALS patients and 20 controls in one study, and cfDNA 
was used to identify a novel differentially methylated 
marker in the RHBDF2 gene in ALS patients compared 
to controls [115]. The study performed ROC analysis to 
determine the diagnostic effect of ALS of the RHBDF2 
gene. Among them, the RHBDF2 gene has two enhancer 
regions, namely CpG1 and CpG2. The AUC for CpG1 
was 0.724 (CI 0.559–0.888; P = 0.017), and the AUC for 
CpG2  was 0.695 (CI 0.527–0.863; P = 0.038). The best 
tipping point for distinguishing ALS patients and con-
trols was 65.97% for CpG1 (sensitivity = 0.850, specific-
ity = 0.526) and 83.26% for CpG2 (sensitivity = 0.800, 

specificity = 0.474). In existing studies, an efficient EM 
(expectation maximization) algorithm CelFiE (CELl 
Free DNA Estimation via expectation–maximization) 
was developed for methylated cfDNA, where CelFiE 
input is WGBS reference data, which allows low cov-
erage and noisy data [117]. In that study, cfDNA was 
detected from ALS patients and age-matched con-
trols with CelFiE. The overall abundance of cfDNA in 
ALS and controls showed significant differences. ALS 
(n = 28, mean = 297.2 ± 110.57 pg/ul) and controls (n = 25, 
mean = 218.78 ± 139.17  pg/ul). And differences were 
found in the estimated skeletal muscle ratio in the ALS 
group, especially the excess in cases compared to the 
control group (P = 5.02 × 10−2). Together, these results 
suggest that cfDNA is a promising direction to identify 
the first quantitative biomarker of muscle atrophy and 
death, a hallmark of ALS [118].

In general, there is a mounting interest in employing 
methylation-based assays to detect signs of organ and tis-
sue damage, and numerous promising markers have been 
discovered in various contexts (Fig. 3). However, further 
research is needed to validate these tissue-specific meth-
ylation markers and to develop effective diagnostic and 
prognostic tools for clinical use.

Fig. 3  Biomarkers of cfDNA methylation have been discovered in tissue and organ injuries in previous research studies. These biomarkers include 
10 related to the brain, 9 to the lungs, 6 to the heart, 7 to the liver, 3 to the kidneys, 7 to the pancreas, and 1 related to muscle
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The path from the identification of specific cfDNA 
methylation markers of tissue and organ injury 
to clinical detection
Methylation-based damage detection relies on altera-
tions in DNA methylation patterns after the tissue and 
organ damage. Methylation patterns are unique to each 
cell type, conserved in the same individual and the 

same cell type within the individual, and highly stable 
under physiological or pathological conditions [119]. 
Therefore, it is possible to utilize specific cfDNA meth-
ylation patterns associated with tissue and organ dam-
age to identify the tissue of origin and infer the extent 
of tissue and organ damage [120]. Identifying particular 
methylation markers linked to tissue and organ damage 

Fig. 4  Development path of cfDNA methylation detection for tissue and organ injury. This pathway outlines the progression of research 
and development necessary to translate potential markers into clinically useful tools for diagnosing and monitoring tissue and organ injuries
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and their application in clinical testing necessitates a 
multi-step approach [121, 122]. However, given the 
continuous discovery and proposal of new biomarkers, 
it becomes imperative to establish a robust biomarker 
verification and certification system to ensure wide-
spread acceptance and proper usage [123, 124]. Adher-
ing to the various principles of biomarker certification, 
we deduce that the process of identifying specific meth-
ylation markers associated with tissue and organ dam-
age and applying them to clinical testing may entail 
several distinct stages, as illustrated in Fig. 4. Neverthe-
less, it is important to note that the utilization of meth-
ylation analysis for tissue damage detection remains at 
an early research stage. As of now, no clinical studies 
have been conducted, and no commercial products 
have been introduced into clinical settings.

Identify and validate potential methylation markers
The FDA has four specific categories for contexts of bio-
marker use: prognostic, predictive, response-indicator, 
and efficacy-response (Table  2) [123]. Start by conduct-
ing a literature review and identifying potential methyla-
tion markers associated with tissue and organ injury. This 
can be done by looking at studies that has investigated 
methylation changes in response to injury or that have 
identified DMRs (differentially methylated regions) in 
diseased tissues compared to healthy tissues. For exam-
ple, in the study of liver damage biomarkers, hepatocellu-
lar specific CpG sites were selected by examining WGBS 
data and identifying differentially methylated or differ-
entially unmethylated regions [27]. For the selection of 
hypermethylation markers, they identified regions with 
a difference exceeding 0.5 between the 75th percentile 
of hepatocyte samples and the 5th percentile of all non-
hepatocyte samples. For hypomethylated markers, a dif-
ference of 0.5 between the 95th and 20th percentiles is 
required. In this way, a total of three hepatocyte markers 
(cg02396797, cg030646442, cg21178851) were screened. 

Methylated DNA databases are valuable resources for 
investigating DNA methylation patterns associated with 
tissue damage. These databases can be used to identify 
biomarkers, understand molecular mechanisms, assess 
severity, monitor treatment response, and study envi-
ronmental and lifestyle factors. Some of these databases 
include reference sequence databases, cancer-related 
databases, and disease-related databases (Table 3). These 
databases provide valuable resources for researchers 
interested in identifying methylation markers associated 
with tissue and organ injury.

Establish a detection assay
Once potential methylation markers have been identi-
fied and need to develop a methylation assay that can 
accurately detect methylation changes in these mark-
ers. The assay could be based on different method-
ologies such as MSP, pyrosequencing, WGBS, or DNA 
methylation array, depending on the specific markers 
being analyzed. And the detection parameters need 
to be optimized after the analysis method is designed. 
The assay parameters such as primer design, annealing 
temperature, cycling conditions, and detection method 
need to be optimized to ensure accurate and reliable 
detection of methylation changes in the identified 
markers.

For example, Miguel Waterhouse developed ddPCR 
methylation assay based on the methylation of PTK1B 
and SESN3 genes to analyze tissue damage in patients 
with acute graft-versus-host disease [104]. Similarly, 
Tulsi K. Mehta et  al. designed primers and probes for 
specific amplification of CALCA genes to develop a 
qPCR (quantitative PCR) assay that is promising for the 
assessment of acute kidney injury in transplant settings 
[107]. In the study of human acute kidney injury, they 
evaluated four consecutive CpG methylations of KLK1 
gene by pyrosequencing, located between − 203 and 
− 135 bp from the transcription start site [106]. In the 

Table 2  FDA biomarker classification based on contexts of use

Biomarker type When biomarker is measured What biomarker indicates

Prognostic Prior to treatment Indicates (estimates) the risk or likelihood that a patient who receives no further 
cancer-directed therapy will experience a specified clinical outcome, such as recur-
rence, progression, or death

Predictive Prior to treatment Interpreted with defined criteria to identify patients who are likely to benefit 
from a specific treatment compared to patients who do not meet the specified criteria

Response indicator During or after treatment Demonstrates a pharmacological or physiological response to the treatment, but does 
not necessarily signify patient benefit. Examples are declines in prostate-specific 
antigen, measures of tumor shrinkage, or pharmacodynamic changes in a parameter 
to show the on-target effect of a drug as proof of mechanism or to optimize dosing

Efficacy response (surrogate) After treatment Provides an early and accurate prediction of both a clinical end point, and the effects 
of the treatment on that end point
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study of cfDNA methylation, Roni Lehmann-Werman 
et  al. established ddPCR program to detect the meth-
ylation status of ITIH4, IGF2R and VTN in cfDNA, in 
which methylation-sensitive TaqMan probe was used 
to interrogated bisulfite-treated cfDNA [105]. The lim-
ited length of the probes (up to 30 bp) determines that 
they can only cover 2–4 CpG sites that provide infor-
mation. In the IGF2R locus, four CpGs were covered. 
However, only two CpGs were covered by probes in 
VTN = loci, predicting a relatively high frequency of 
noise (positive droplets) in DNA from non-liver tissue. 
Two TaqMan probes were designed to increase speci-
ficity, each of which identified methylation deficiencies 
in different pyrimidine clusters (each containing two 
CpG sites) from the same amplified 100-bp fragment 
from VTN loci and each probe is labeled with a differ-
ent fluorophore.

Analytical validity
Analytical validity is an important aspect of validating a 
detection method, which evaluates the accuracy and reli-
ability of the developed assay, including precision, sensi-
tivity, and specificity. To ensure the analytical validity of 
the developed assay for methylation detection, the fol-
lowing steps should be taken: Precision evaluation: Using 
control samples with known methylation status, assess 
the precision of the detection method. Calculate inter-
nal precision and external precision by analyzing repli-
cate samples to determine the precision of the method. 
Sensitivity evaluation: Using samples with known lower 
methylation levels or smaller methylation changes, assess 
the sensitivity of the detection method. Evaluate the abil-
ity of the method to accurately detect small methylation 
changes. Specificity evaluation: Using samples with dif-
ferent methylation patterns or from different sources, 
assess the specificity of the detection method. Determine 

Table 3  Contents and websites of common DNA methylation databases

Database name Application Brief introduction Website References

EWAS Data Hub Reference sequence database 81 tissues/cell types (that contain 25 brain 
parts and 25 blood cell types), six ancestry 
categories, and 67 diseases (including 39 
cancers)

https://​bigd.​big.​ac.​cn/​ewas/​datah​ub/ [125, 126]

iMETHYL Reference sequence database whole-DNA methylation (~ 24 million 
autosomal CpG sites), whole-genome 
(~ 9 million single-nucleotide variants), 
and whole-transcriptome (> 14,000 genes) 
data for CD4+ T-lymphocytes, monocytes, 
and neutrophils collected from approxi-
mately 100 subjects

http://​imeth​yl.​iwate​megab​ank.​org/​index.​
html/

[127]

MethBank Reference sequence database 34 consensus reference methylomes, 336 
single-base resolution methylomes and/
or tissues of five plants, and 18 single-base 
resolution methylomes from two animals

http://​bigd.​big.​ac.​cn/​methb​ank/ [128, 129]

MethCNA Cancer-related database 10,000 tumor samples representing 37 
cancer types

http://​cgma.​scu.​edu.​cn/​MethC​NA/ [130, 131]

MENT Cancer-related database It contains DNA methylation, gene expres-
sion, correlation of DNA methylation 
and gene expression in paired samples, 
and clinicopathological conditions gath-
ered from the GEO and TCGA​

http://​mgrc.​kribb.​re.​kr:​8080/​MENT/ [132]

Pubmeth Cancer-related database It collects and collates cancer-related 
methylation data from the literature 
and manually proofreads and reviews 
it to provide a high-quality database 
of cancer-related methylation genes

http://​www.​pubme​th.​org/ [133]

SurvivalMeth Cancer-related database It has been developed to investigate 
the function of DNA methylation-related 
original effect on the prognosis of cancer, 
which documented many kinds of DMFEs, 
including 309,465 CpG island-related 
elements, 104,748 transcription-related 
elements, 77,634 repeat elements, 
and 1,689,653 cell-type-specific super-
enhancers and 1,304,902 CTCF-binding 
regions for analysis

http://​biobi​gdata.​hrbmu.​edu.​cn/​survi​
valme​th/

[134]

https://bigd.big.ac.cn/ewas/datahub/
http://imethyl.iwatemegabank.org/index.html/
http://imethyl.iwatemegabank.org/index.html/
http://bigd.big.ac.cn/methbank/
http://cgma.scu.edu.cn/MethCNA/
http://mgrc.kribb.re.kr:8080/MENT/
http://www.pubmeth.org/
http://biobigdata.hrbmu.edu.cn/survivalmeth/
http://biobigdata.hrbmu.edu.cn/survivalmeth/
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the ability of the method to accurately detect methylation 
changes without false positives. Validating the developed 
assay using control samples with known methylation 
status helps establish the accuracy and sensitivity of the 
detection method. This assists in evaluating the perfor-
mance of the method in methylation detection and pro-
vides a reliable foundation for its clinical application.

Clinical validity
After analytical validity has been established, clini-
cal studies are initiated to establish clinical validity: the 
demonstration that the biomarker and assay are fit for 
purpose for the specific context of use—that is, that 
the results will inform the medical decision [135]. The 
clinical validity of the developed assay should be evalu-
ated using clinical samples, such as blood or tissue sam-
ples obtained from patients with the specific tissue or 
organ injury of interest. This validation process aims 
to determine whether the assay can effectively distin-
guish between patients with and without the injury, and 
assesses clinical sensitivity, clinical specificity, and detec-
tion rate in individuals with the injury. Clinical sensitiv-
ity refers to the ability of the assay to correctly identify 
individuals with the specific tissue or organ injury, while 
clinical specificity refers to the ability of the assay to cor-
rectly identify individuals without the injury. The assay 
should be evaluated for both sensitivity and specificity to 
determine its accuracy in clinical settings. Additionally, 
the detection rate in individuals with the injury should be 
assessed, which reflects the proportion of positive results 
among patients who have been clinically diagnosed with 
the injury. This information can help assess the per-
formance of the assay in detecting the specific tissue or 
organ injury in the intended patient population.

For example, ddPCR methylation assay based on the 
PTK1B gene was clinically validated in 28 aGvHD patients 
and 11 patients with no associated symptoms, and the opti-
mal threshold for distinguishing aGvHD from non-AgVHD 
in the liver was 1.5 (logPTK2 copies /ml plasma; sensitiv-
ity: 0.928; specificity: 0.910) [104]. Similarly, Asael Lubotzky 
et  al. recruited 65 healthy donors, 85 patients with local 
cancer (extrahepatic), 55 patients with metastatic cancer 
that did not involve the liver, and 63 patients with cancer 
with liver metastasis to validate the assay based on cfDNA 
PCR-sequencing analysis of the performance of distinguish-
ing liver metastases. The results showed that the AUC con-
centration of hepatocytes detected by this method was 0.81 
(95% confidence interval = 0.74–0.87, P = 0.0001). The speci-
ficity and sensitivity of liver metastasis detection are 95% and 
35%, respectively.

Clinical utility
Clinical utility refers to the evaluation of the cost-effec-
tiveness of a developed detection method in patient 
testing, taking into consideration factors such as PPV 
(positive predictive value), NVP (negative predictive 
value), and costs. The evaluation of clinical utility can 
consider multiple factors, including but not limited to the 
following.

Diagnostic accuracy: Assessing the sensitivity, specific-
ity, PPV, and NPV of the methylation detection method 
in correctly identifying tissue or organ injury in patients. 
Clinical impact: Evaluating the impact of the methyla-
tion detection method on treatment decision making and 
patient management, such as whether it helps in select-
ing appropriate treatment options, monitoring treatment 
response, or predicting disease recurrence. Cost-effec-
tiveness: Considering the costs associated with the meth-
ylation detection process, including sample collection, 
laboratory testing, data analysis, and result interpreta-
tion, and weighing them against the potential benefits, 
such as improved patient outcomes, reduced healthcare 
costs, and enhanced patient satisfaction. Feasibility and 
scalability: Assessing the practical feasibility of imple-
menting the methylation detection method in a clinical 
setting, including factors such as ease of sample collec-
tion, laboratory infrastructure and expertise required, 
and scalability to a larger patient population. Compara-
tive effectiveness: Comparing the methylation detec-
tion method with existing standard diagnostic methods 
or alternative approaches in terms of accuracy, clinical 
impact, and cost-effectiveness. Ethical and legal consid-
erations: Taking into account ethical and legal consid-
erations, such as patient privacy, informed consent, and 
compliance with regulatory requirements, in the evalua-
tion of clinical utility.

In summary, identifying specific methylation mark-
ers associated with tissue and organ injury and applying 
them to clinical detection requires a rigorous and sys-
tematic approach that involves several phases of research, 
validation, and testing. Nonetheless, it is worth noting 
that the use of methylation analysis for tissue damage 
detection is currently in the early stages of research, and 
as of now, no clinical studies have been conducted, nor 
have any commercial products been implemented in clin-
ical settings.

Collaboration between researchers, clinicians, and 
industry partners is necessary to ensure the successful 
development and implementation of methylation-based 
diagnostic assays for clinical use.
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Challenges and future directions
Combined with the previous discussion, there are some 
challenges in studying the application of methylation 
markers in tissue and organ injury. Challenges and future 
research directions include:

Variability in methylation patterns between individuals
According to a large number of previous studies, DNA 
methylation patterns vary greatly among individuals and 
are related to gender, living environment and many other 
factors [136]. Therefore, there are still many difficulties 
in using DNA methylation analysis to detect tissue dam-
age in clinic. One potential solution to this challenge is 
to use large-scale studies to identify methylation patterns 
that are consistent across populations, rather than relying 
on individual markers [137, 138]. This approach can help 
identify methylation patterns that are common across dif-
ferent individuals and can be used as a reference for iden-
tifying changes in methylation associated with different 
tissue or organ. By identifying these common patterns, 
researchers can reduce the impact of individual variabil-
ity and improve the accuracy of methylation analysis. An 
alternative approach involves the utilization of machine 
learning algorithms to discern patterns of methylation 
that are unique to particular types of tissue damage. This 
approach moves away from relying solely on individual 
markers, which can be influenced by individual variabil-
ity, and instead focuses on comprehensive patterns that 
can provide more robust and reliable insights [139]. This 
approach can help identify methylation changes that are 
associated with specific types of tissue damage or disease. 
By focusing on specific patterns of methylation, research-
ers can reduce the impact of individual variability and 
improve the accuracy of methylation analysis.

The influence of external factors on methylation patterns
Due to the influence of external factors on DNA meth-
ylation patterns, the influence can interfere with the 
decision making of tissue and organ damage screening, 
diagnosis and treatment [140–142]. Future research can 
focus on identifying and controlling for external fac-
tors that may influence methylation patterns, such as 
lifestyle factors and environmental exposures. This can 
be done through large-scale population studies that col-
lect detailed information about these factors, as well as 
experimental studies that use animal models to inves-
tigate the effects of specific exposures on methylation 
patterns. For example, when Kang Li studied the rela-
tionship between HBV and related chronic hepatitis 
and the methylation of the peripheral immune system, 
it was found that the methylation pattern of the periph-
eral immune system was influenced by external factors. 
Therefore, they applied Bonferroni correction to the 

potential confounding factors in the construction of a 
predictive model for compensatory cirrhosis and found a 
truly significant correlation [143].

Technical limitations and inconsistencies in detection 
methods
Existing methylation detection methods also have tech-
nical shortcomings, such as sensitivity and specificity 
issues. Research in this area can focus on developing 
more sensitive and specific methods for detecting meth-
ylation changes. This can include the use of new tech-
nologies such as nanopore sequencing and single-cell 
sequencing [144, 145], as well as the development of 
improved bioinformatics tools for analyzing methyla-
tion data. Additionally, research can focus on identifying 
and addressing technical limitations in existing methyla-
tion detection methods. For example, bisulfite sequenc-
ing, the most commonly used method for detecting DNA 
methylation, can introduce biases and inaccuracies due 
to incomplete conversion of unmethylated C and DNA 
damage during the bisulfite treatment process [146]. New 
approaches to address these issues, such as the use of 
alternative chemical treatments or improved enzymatic 
conversion methods, could improve the accuracy and 
reliability of methylation detection [147]. Furthermore, 
research can investigate the impact of technical factors 
on methylation analysis, such as DNA quality and quan-
tity, sequencing depth, and library preparation meth-
ods. Identifying and mitigating these factors can help 
to reduce variation and increase the reproducibility of 
methylation studies.

Conclusion and outlook
Methylation-based assays have shown great poten-
tial in detecting organ and tissue damage in a variety of 
contexts. These assays hold promise for detecting early 
damage, monitoring the progression of tissue and organ 
damage, evaluating treatment efficacy and predict-
ing transplant outcomes. However, there are still some 
challenges to overcome, including variability in methyl-
ation patterns, external factors that can influence meth-
ylation patterns, and technical limitations in detection 
methods. Despite these challenges, there is significant 
interest in this field, and ongoing research continues to 
identify promising markers and develop effective diag-
nostic and monitoring tools. As technology contin-
ues to advance and DNA methylation patterns become 
better understood, methylation-based tests have the 
potential to significantly improve the diagnosis and man-
agement of organ and tissue damage in clinical Settings 
by analyzing blood or other body fluids, which will sig-
nificantly improve patients’ access to diagnostic testing 
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and monitoring. The use of tests based on DNA methyla-
tion to predict response to different treatments enables 
a personalized medical approach to organ and tissue 
damage. Studying the role of epigenetic changes, includ-
ing DNA methylation, in the development and progres-
sion of organ and tissue damage will also provide insights 
into disease mechanisms and potential new therapeutic 
targets.
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