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Abstract 

Background  Shortened lifespans are associated with having Attention Deficit Hyperactivity Disorder (ADHD), which 
is likely mediated by related behavioral and sociodemographic factors that are also associated with accelerated 
physiological aging. Such factors include exhibiting more depressive symptoms, more cigarette smoking, higher 
body mass index, lower educational attainment, lower income in adulthood, and more challenges with cognitive 
processes compared to the general population. A higher polygenic score for ADHD (ADHD-PGS) is associated with 
having more characteristic features of ADHD. The degree to which (1) the ADHD-PGS associates with an epigenetic 
biomarker developed to predict accelerated aging and earlier mortality is unknown, as are whether (2) an associa-
tion would be mediated by behavioral and sociodemographic correlates of ADHD, or (3) an association would be 
mediated first by educational attainment, then by behavioral and sociodemographic correlates. We evaluated these 
relationships in a population-based sample from the US Health and Retirement Study, among N = 2311 adults age 50 
and older, of European-ancestry, with blood-based epigenetic and genetic data. The ADHD-PGS was calculated from 
a prior genomewide meta-analysis. Epigenome-wide DNA methylation levels that index biological aging and earlier 
age of mortality were quantified by a blood-based biomarker called GrimAge. We used a structural equation mod-
eling approach to test associations with single and multi-mediation effects of behavioral and contextual indicators on 
GrimAge, adjusted for covariates.

Results  The ADHD-PGS was significantly and directly associated with GrimAge when adjusting for covariates. In 
single mediation models, the effect of the ADHD-PGS on GrimAge was partially mediated via smoking, depressive 
symptoms, and education. In multi-mediation models, the effect of the ADHD-PGS on GrimAge was mediated first 
through education, then smoking, depressive symptoms, BMI, and income.

Conclusions  Findings have implications for geroscience research in elucidating lifecourse pathways through which 
ADHD genetic burden and symptoms can alter risks for accelerated aging and shortened lifespans, when indexed by 
an epigenetic biomarker. More education appears to play a central role in attenuating negative effects on epigenetic 
aging from behavioral and sociodemographic risk factors related to ADHD. We discuss implications for the potential 
behavioral and sociodemographic mediators that may attenuate negative biological system effects.
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Background
Biological aging has recently been measured through 
epigenetic age scores, which quantify the degree of 
methylation marks across one’s epigenome. Higher 
scores for one score in particular, called GrimAge, show 
associations with having more disability, disease co-
morbidities, and shorter survival time compared to the 
same chronologically-aged peers [1]. Also associated 
with all of these factors is having health and behavioral 
symptoms associated with Attention Deficit Hyperac-
tivity Disorder (ADHD) [2–8]. ADHD is characterized 
by challenges of sustained attention and concentra-
tion, increased impulsivity, affective disorders, and 
emotional dysregulation [8–12]. In turn, these chal-
lenges associate with downstream social and academic 
problems among adolescents, as well as less healthy 
behaviors such as poor dietary regulation, maladaptive 
coping abilities, and more substance use throughout 
life [7, 13–17]. Individuals with a higher genetic bur-
den for ADHD, indexed through an ADHD polygenic 
score (ADHD-PGS), are also at higher risk for the same 
co-occurring behavioral factors and co-morbidities [3, 
18]. Assessing relationships between ADHD genetic 
burden, via the ADHD-PGS, and epigenetic GrimAge 
can improve our understanding of pathways through 
which risk for earlier mortality is elevated for those 
with ADHD. This may be useful for clinical and gerosci-
ence researchers [19, 20] in assessing the utility of this 
epigenetic biomarker among an understudied group of 
older individuals at elevated risk for shorter health- and 
lifespans due to features of ADHD.

ADHD polygenic score to represent elevated risk for ADHD 
characteristics
In larger population-based studies, it is often impos-
sible to obtain clinical assessments for diagnoses of 
ADHD on respondents [21, 22]. Additionally, high het-
erogeneity exists in what leads to a confirmed diagnosis 
in adults [12, 23–25], for example, changes in criteria 
[26] defined by the Diagnostic and Statistical Manual of 
Mental Disorders (DSM), inconsistent informant rat-
ings used in symptom reports [27], and different types 
of behavioral challenges, or psychiatric co-morbidities 
present at the time one is evaluated for a diagnosis [28, 
29]. There are also varying degrees of symptoms that 
occur at different times across the lifespan [30, 31], 
with no clear clinical cut-points for diagnosis [12]

There are several genetic variants that have been con-
sistently associated with ADHD, yet the underlying 
molecular genetics are not fully understood [12, 27]. 
Overall, the literature indicates that genetic contribu-
tions to ADHD are consistently high, with twin and 
family studies estimating heritability for ADHD to be 
74% throughout life [27, 32–35]. Polygenic scores (PGS) 
are calculated by summing effects of multiple genetic 
markers across the genome [27]. The ADHD-PGS has 
shown dose-dependent relationships whereby increas-
ing deciles of the score are associated with increas-
ingly greater odds for an ADHD diagnosis (average 
OR = 1.56, 95% confidence interval: 1.53–1.60) [18, 
36]. There is no established diagnostic threshold for the 
ADHD-PGS [18, 37]. Yet, polygenic scores for ADHD 
can be calculated to represent a continuous range in 
which individuals with higher scores are likely to meet 
criteria for a clinical diagnosis, or exhibit more charac-
teristics typical of an ADHD diagnosis [18, 38].

Features of ADHD and earlier age of mortality
Individuals with any of the behavioral and sociodemo-
graphic characteristics commonly associated with ADHD 
carry a twofold greater risk for earlier death in childhood 
compared to the general population [5]. A recent meta-
analysis partially attributed this to unnatural causes (e.g., 
accidents, unintentional injuries, suicide) rather than to 
natural causes (e.g., neurologic, respiratory problems, 
cancer), although specific behavioral mediators were 
not assessed. Another study estimated that due to 14 
adverse sociodemographic, health and behavioral media-
tors, those with ADHD showed a 12.7-year reduction in 
healthy life expectancy before age 27 [7]. Mediating fac-
tors included age, gender, weight and height, educational 
attainment, income, smoking status, frequency of exer-
cise, alcohol use, diet, typical sleep duration, subjective 
health state, presence of Type 2 diabetes, and risky driv-
ing. Even those who no longer met the diagnostic criteria 
for ADHD at follow-up retained a 9.6-year reduction in 
healthy life expectancy based on these risks. Other large-
scale studies similarly find that cause-specific mortality 
for those with ADHD is related to psychiatric co-morbid-
ities [4, 39].

When evaluating health outcomes with aging, includ-
ing cognitive outcomes, mental health and age at mor-
tality, one factor that is consistently protective against 
worse outcomes is more educational attainment [40–42]. 
Individuals with more features of ADHD tend to pursue 
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less education because of behavioral issues that interfere 
with learning in traditional classrooms, learning chal-
lenges in core subjects, and low availability of targeted 
academic support [43–45]. Although, with the criti-
cal role education plays for multiple aging-related and 
health outcomes, examining how education can mitigate 
the adverse circumstances associated with ADHD, and 
attenuate poorer outcomes such as shortened lifespans 
is important. Also clinically useful is examining how the 
effects of these factors altogether are reflected in a meas-
urable biomarker of accelerated biological aging and ear-
lier mortality.

Epigenetic GrimAge and ADHD genetic burden
Use of the epigenome has become a promising method 
for indexing accelerated biological aging when the degree 
of methylation marks is quantified into indices previ-
ously shown to predict lifespan, healthspan or physi-
ological dysfunction [1, 46–51]. Only two studies to date 
have examined how the ADHD-PGS relates to meth-
ylation levels [52, 53]. One study showed no relationship 
between the ADHD-PGS and the first-generation Hor-
vath clock [54] among a young sample, ages 7 to 12 years 
[52]. In contrast, the other study found that among 
adults, a higher ADHD-PGS was associated with lower 
global methylation levels among ADHD cases, but not 
among controls [53]. Additionally, cases showed signifi-
cantly lower global methylation levels overall and greater 
prevalence of externalizing conditions, including nicotine 
use, alcohol use, substance use, oppositional defiance, 
major depression, generalized anxiety, and bipolar disor-
der [53]. Relatedly, lower global methylation levels have 
also been associated with older age, and with greater 

physiological decline [55, 56]. Thus, methylation levels 
appear to reflect some degree of difference in age-related 
impairment including for those with greater ADHD 
genetic burden or a diagnosis, although such associations 
may not be captured by all epigenetic clocks.

Methylation at specific regions has also been consist-
ently associated with multiple environmental factors and 
behaviors, for example, environmental pollution [57, 58], 
tobacco smoke [59, 60], obesity [61], and adverse child-
hood stress experiences [62]. Prior research has shown 
that regions encompassed in the GrimAge clock are 
strongly associated with earlier physiological and func-
tional declines (e.g., cancers, chronic disease, immune 
system dysfunction, endocrine declines). GrimAge has 
demonstrated stronger relationships with all-cause mor-
tality [48] and aging-related clinical phenotypes, includ-
ing functional ability, cognition, and frailty [63]. Recently, 
GrimAge has been shown to be a stronger predictor of 
mortality than the Horvath clock, with effects that are 
independent of genetic influences [64]. Thus, as a sec-
ond-generation clock, GrimAge may be better suited for 
indexing accelerated aging and risk for earlier mortality 
related to specific health risks related with ADHD.

The current study
Given the consistency of research on the relationships 
between features of ADHD and risk for earlier mortal-
ity [3, 5, 7, 8], it is likely that the association between 
higher ADHD-PGSs and older biological age is medi-
ated by some of the same adverse health behaviors and 
sociodemographic correlates that result in reduced life 
expectancy for those with ADHD [7]. These are shown in 
Fig.  1. First, we test the hypothesis that an ADHD-PGS 

Fig. 1  Proposed mediating pathways for the relationships between an Attention Deficit Hyperactivity Disorder (ADHD) polygenic score and 
epigenetic aging, through the hallmark behaviors and challenges related to ADHD
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associates with the epigenetic age marker for shortened 
lifespan, GrimAge. Second, we evaluate the hypothesis 
that health behaviors and sociodemographic correlates 
believed to be on the etiological pathway from ADHD 
to reduced life expectancy are similarly on the etiologi-
cal pathway from the ADHD-PGS to older epigenetic 
age. Third, we test the hypothesis that the effects of the 
ADHD-PGS on GrimAge are initially mediated through 
educational attainment, then through the other factors. 
Findings from this study have the potential to identify 
life-course pathways through which the ADHD-PGS and 
related symptoms associate with earlier mortality and 
could identify potential targets that attenuate biological 
system effects.

Methods
Participants
The sample was drawn from the Health and Retirement 
Study (HRS), a nationally representative sample of house-
holds of older Americans (aged 51 + years) in the USA. 
Data collection for the HRS began in 1992 and contin-
ues to be collected bianually [65]. The HRS is funded by 
the National Institute on Aging and is administered by 
the University of Michigan, where there is Institutional 
Review Board approval for the study. Participants con-
sent to be interviewed biennially on a broad range of 
economic, psychological, physical, and biological health 
measures [66]. For the present study, we included all par-
ticipants who were interviewed in 2016 and provided a 
venous blood sample with which to characterize DNA 
methylation levels [67], who participated in an enhanced 
face-to-face interview (in 2006, 2008, 2010, 2012) to 
provide a saliva sample with which to characterize indi-
vidual genotypes to calculate ADHD genetic scores and 
provided responses to surveys at baseline or subsequent 
waves (through 2016) to calculate cognitive function-
ing, BMI, lifetime smoking dosage, depression history, 
and educational attainment. In total, the HRS calculated 
polygenic scores on 12,900 respondents of European 
ancestry who provided genetic data through 2012. The 
total sample that provided DNA methylation data in 2016 
included 4018 individuals, in which 2344 were overlap-
ping with the genetic subsample. Of those, n = 2311 had 
complete data on all other variables and created the ana-
lytic sample.

Measures
Epigenetic biological age score
DNA methylation was assessed using the Infinium Meth-
ylation EPIC BeadChip (Illumina, Inc., San Diego, CA). 
Preprocessing and quality control were completed using 
the minfi package in R, with removal of suboptimal 
samples or sex mismatched samples thereby yielding 

836,660 methylation probes. Epigenetic age as measured 
by GrimAge was calculated by HRS [68]. As described in 
a prior publication [1], the clock was developed using a 
two-stage process in which developers first identified 
DNA methylation surrogates for physiological risk and 
stress factors (i.e., plasma proteins, growth differentia-
tion factors) and smoking pack-years. Second, time to 
death due to all-cause mortality was regressed in elastic 
net Cox regression models on the DNA methylation sur-
rogates and estimator of smoking pack-years to identify 
1030 CpG sites that were then used to calculate a com-
posite epigenetic score intended to estimate epigenetic 
age and predict morality risk. The slope and intercept 
terms of the GrimAge score calculation were then chosen 
to match the mean and variance of chronological age in 
the training data so that GrimAge can be interpreted in 
units of years. The score has demonstrated high and rep-
licative properties for predicting time to death and onset 
of coronary heart disease, cancer and other age-related 
conditions [1, 47, 63].

Polygenic score for ADHD (ADHD‑PGS)
Genotyping was performed by the National Institutes 
of Health (NIH) Center for Inherited Disease Research 
(CIDR; Johns Hopkins University, Baltimore, MD) using 
the Illumina Human Omni2.5-Quad BeadChip (Illu-
mina, San Diego, CA), with coverage of nearly 2.5 mil-
lion single nucleotide polymorphisms (SNPs). All quality 
control checks and imputation procedures were imple-
mented by the HRS with details provided elsewhere [69, 
70]. Related individuals were removed after estimation 
of kinship coefficients. The genotyped data were then 
imputed to the 1000 Genomes reference panel, phase 3, 
version 5 using Minimac, with phasing performed using 
SHAPEIT2. From the genotyping data, HRS calculates 
and distributes polygenic scores for several traits [71]. 
The PGS for ADHD was created from publicly available 
results of a meta-analysis of genomewide association 
scans across 12 cohorts (n = 55,374 from 20,183 cases 
and 35,191 controls) [18], with the discovery cohort from 
the Integrative Psychiatric Research (iPSYCH) initiative 
and remaining 11 cohorts from the Psychiatric Genom-
ics Consortium (PGC). ADHD-PGSs were calculated by 
weighted sums of SNPs in which the weights were gener-
ated by the meta-analysis. The PGS includes 12 genetic 
variants that surpassed genome-wide significance in the 
discovery sample, 10 of which validated in the replica-
tion sample. In total, the ADHD-PGS includes 1,043,408 
SNPs that were in common between the HRS imputed 
data and the meta-analysis. Scores were then standard-
ized within the HRS cohort to a mean of 0 and standard 
deviation of 1. Because genetic risk scores for ADHD 
were derived from a meta-analysis of primarily European 
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ancestry individuals and evidence that polygenic indices 
are sensitive to genetic substructure and ancestry dif-
ferences [72, 73], this study includes only the European 
ancestry sample.

Health behaviors and sociodemographic covariates
For cigarette smoking, the National Cancer Institute defi-
nition of smoking pack-years was calculated as an indi-
cator of lifetime smoking, as a multiplicand of smoking 
duration in years and average cigarettes per day, then 
divided by 20. Variables used for coding pack-years 
included age of start, age of stop, and cigarettes smoked 
per day extracted from HRS 1992–2016 core wave files. 
In the case of a missing start age, the mean start age was 
used, calculated for each gender and 10-year birth cohort 
(e.g., < 1920, 1920–29, 1930–39, etc.). In the case of miss-
ing cigarettes smoked per day, the mean was used, calcu-
lated for each gender, 10-year birth cohort, and stratified 
by current/former smoking status. In the case of missing 
stop age, the mean stop age was used, calculated for each 
gender and 10-year birth cohort for former smokers.

Depressive symptoms were assessed using a modi-
fied version of the well-known Center for Epidemio-
logic Studies-Depression (CES-D) inventory [74, 75] at 
baseline. The HRS uses 8 of the original items selected 
for their psychometric properties and assesses the con-
tinuum of depressive symptoms [76]. A continuous sum 
score of number of symptoms was used, which has dem-
onstrated similar construct and external validity to those 
based on the original inventory [77, 78].

Body Mass Index (BMI), cognition, and income vari-
ables were coded from the HRS baseline wave for each 
respondent, or the subsequent wave to study entry if 
baseline data were missing. A continuous variable was 
used for BMI, calculated as kilograms of weight divided 
by height in meters squared (kg/m2). A continuous 
composite score for cognitive functioning was used, 
calculated as a sum score (range 0 to 27) with a higher 
score indicating fewer challenges with cognitive pro-
cesses, including domains of episodic memory, work-
ing memory, sustained attention, and orientation [79]. 
Total income in adulthood was calculated as a sum of 
the income of respondent and their spouse if applicable. 
Because of the wide range of income, from $0 to over 
$2 M, we categorized it into quartiles with cut-off points 
at $16,800, $36,820 and $73,560.

Years of education attained were assessed as total num-
ber of years of school completed with a maximum of 
17  years at the high end, indicating schooling beyond a 
college degree.

Other study covariates included self-identified gen-
der (0 = female, 1 = male) that was verified genetically, 
chronological age in years, and the top six eigenvalues 

from principal component (PC) analysis of genotyped 
data to account for differences in population substructure 
[72, 80]. Six eigenvalues were selected for several reasons, 
including that prior analyses on ADHD-PGS and global 
DNA methylation indicated sufficient coverage using 5 
PCs [53]; in preliminary regression models predicting 
GrimAge in our data including all 10 PCs, only PC1 was 
significantly associated with GrimAge (p = 0.02); rec-
ommendations in HRS quality control evaluations show 
sufficient coverage of population substructure problems 
when using 6–7 PCs [71]; and that we restricted the anal-
ysis to individuals of European ancestry to further reduce 
issues with population substructure.

Statistical analyses
First, ordinary least-squares (OLS) regression models 
were constructed to evaluate the association between 
the ADHD-PGS and epigenetic age, adjusted for age, 
gender, and six ancestry principal components (PCs). 
Second, structural equation models (SEMs) were used 
to test indirect effects of the ADHD-PGS and epigenetic 
age through smoking pack-years, depressive symptoms, 
BMI, education, cognition and income with all mediators 
together. Covariances were added between all predic-
tors. Third, multi-mediational SEMs were constructed 
to test whether there were indirect effects of the ADHD-
PGS through education to influence all other media-
tors and GrimAge. All SEMs were adjusted for age and 
gender. Because in SEMs, PCs contributed 0 variance to 
the model, they were not included in SEMs. OLS mod-
els were constructed using SAS [81] and SEMs in Mplus 
[82].

We examined direct and indirect effects of each model 
and used common model fit indices to evaluate good-
ness of fit: root-mean square error of approximation 
(RMSEA), Tucker–Lewis Index (TLI), Comparative Fit 
Index (CFI), and Chi-square values to evaluate the best 
fitting model and p-value threshold of 0.05 for evaluating 
significance of path estimates. Generally, lower RMSEA 
values from 0.01, 0.05, 0.08 to 0.10 indicate the model 
has excellent, good, acceptable, and poor fit to the data, 
respectively [83, 84]; in contrast, the larger values for 
TLI and CLI at greater than 0.90 and 0.95 suggest good 
model fit [85, 86]. The direct effect in SEMs is defined as 
the effect of the ADHD-PGS (X) on GrimAge (Y) at the 
mean level of the mediator (M), and quantified by the 
path coefficient c. The indirect effect of the ADHD-PGS 
on GrimAge is quantified as the products of the path 
coefficients, a (from X to M) and b (from M to Y). Bias-
corrected confidence intervals for indirect effects were 
calculated by bootstrapping with 5000 draws [87]. For 
path models with 80% power or greater to detect small 
effects in partial mediation, a single mediator model 
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requires a sample size of 980 and multiple mediator 
model requires 920 [88]; thus, we were adequately pow-
ered with n = 2311 for this study.

Because chronological age showed high correlation 
with epigenetic age (r = 0.83), we ran all analyses adjusted 
for chronological age. Thus, we report all results using 
GrimAge scaled in units of years, and unstandardized 
coefficients to interpret effects in years of GrimAge.

Results
Sample characteristics
The analytic sample is comprised of 2311 adults who 
ranged between 50 and 98 in chronological age. As 
shown in Table  1, the epigenetic GrimAge score had a 
mean of 69.4 (SD = 8.7). The average epigenetic age for 
the sample was 2.2 years younger than the average chron-
ological, or calendar age. The ADHD-PGS was stand-
ardized to a mean of 0 and standard deviation of 1, with 
scores ranging from −3.6 to 3.7. More than half of the 
sample was women, and on average individuals reported 
experiencing less than 1 depressive symptom in the last 
week, and mean lifetime pack-years among ever smok-
ers of 27.5. Additionally, at least one-third of the sample 
fell into the obese range when defined as a BMI of 30 
or greater. About 46.7% respondents completed at least 
16 years of school, or the equivalent of a college degree, 
and the mean income was over $80,000.

ADHD‑PGS and epigenetic aging
As shown in Table 2, we found support for hypothesis 1. 
The ADHD-PGS, with each 1-SD increase, was signifi-
cantly associated with almost half a year older GrimAge 

(b = 0.49, p < 0.0001). Each additional chronological year 
of age was associated with a 0.76  year older GrimAge 
(b = 0.76, p < 0.0001). Men had a 3.43 year higher Grim-
Age (b = 3.43, p < 0.0001) compared to women. All vari-
ables accounted for 74.85% of the variation in GrimAge, 
with 4.82% of the variation accounted for by gender, 
ADHD-PGS and ancestral principal components. The 
ADHD-PGS alone accounted for 0.29% of the variation in 
epigenetic age. Bivariate correlations among variables are 
provided in the Additional file 1: Table S1.

Because a prior study [52] found no association 
between the ADHD-PGS and the first-generation Hor-
vath epigenetic clock often used to reflect biological 
aging, we tested the association in our sample to com-
pare potential differences. We also found no association 
between the ADHD-PGS and the Horvath epigenetic 
clock (p = 0.56; details provided in the Additional file 1: 
Table S2).

Indirect effects through adverse behavioral 
and sociodemographic mediators
To test hypothesis 2, the model predicting GrimAge 
was constructed with all mediators in the model, as 
depicted in Fig. 2, and showed good fit (χ2(42) = 5159.42, 
p < 0.0001, RMSEA = 0.036, CFI = 0.998, TLI = 0.976). 
In this model, the ADHD-PGS directly associated with 
GrimAge, with each additional SD of the PGS associat-
ing with almost a quarter year older GrimAge (b = 0.22, 
p < 0.01). Smoking, depressive symptoms, and education 
mediated 51.7% of the effect of the ADHD-PGS on Grim-
Age as described below.

Indirect paths from the ADHD-PGS to GrimAge 
were significant through smoking (b = 0.13, p < 0.001), 
depressive symptoms (b = 0.02, p < 0.011), and education 
(b = 0.06, p < 0.0001), as shown by the blue shaded boxes 
in Fig. 2 and as listed in Table 3. Indirect paths were not 
significant through BMI (b = 0.009, p = 0.14), cognition 

Table 1  Sample characteristics for participants from the US 
Health and Retirement Study

Range for depressive symptoms was 0 to 8, smoking pack-years were 0 to 156, 
BMI was 16.5 to 57.4, cognition score was 0 to 27, years of education was 0 to 17, 
income was 0 to 2.1 million

SD = standard deviation, ADHD = attention deficit hyperactivity disorder

Variable Mean (SD) or n (%)

Epigenetic age in 2016: GrimAge (years) 69.4 (8.7)

Chronological age in 2016 (years) 71.6 (9.6)

ADHD polygenic score 0.0 (1.0)

Gender

 Male 996 (43.6%)

 Female 1289 (56.4%)

Depressive symptoms 1.0 (1.6)

Smoking (lifetime pack years) 27.5 (26.2)

Body Mass Index (BMI) (kg/m2) 27.8 (5.6)

Cognition score 17.7 (3.6)

Education attained (years) 13.6 (2.4)

Income ($) 82,358.4 (100,592.4)

Table 2  Unstandardized coefficients from regression models 
for the direct association between the ADHD Polygenic Score 
(ADHD-PGS) and epigenetic aging, as indexed by the DNA 
methylation-based indicator of GrimAge

Models are adjusted for ancestral principal components as covariates for 
population substructure

SE = standard error, R2 = Variance explained by the model

Parameter Beta coefficient SE p-value

Intercept 74.79 0.30 < .0001

Age 0.76 0.01 < .0001

Gender: male 3.43 0.18 < .0001

ADHD-PGS 0.49 0.09 < .0001

Model R2 74.85%
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Fig. 2  SEM results showing mediating pathways for the relationships between the ADHD polygenic score (ADHD-PGS) and GrimAge in later life. 
#p < .10, *p < .05, **p < .001, ***p < .0001

Table 3  Unstandardized direct and indirect effects of the ADHD polygenic score (ADHD-PGS) on GrimAge for the single mediation 
model

SE = standard error, 95% CI = 95% confidence interval, estimated from a bias-corrected bootstrap procedure with 5000 draws
# p < .10; *p < .05; **p < .01; ***p < .001. Total effect on GrimAge: β = 0.460, SE = 0.090, p < .0001

Pathway Path a Path b Path a*b:
Indirect effects

Path c:
Direct effect

Beta (SE) Beta (SE) Beta (95% CI) Beta (SE)

ADHD-PGS → GrimAge – – – 0.222 (0.080)**

Via smoking 1.622 (0.482)*** 0.077 (0.003)*** 0.125
(0.064, 0.187) ***

Via depressive symptoms 0.109 (0.033)** 0.214 (0.052)*** 0.023
(0.009, 0.041)*

Via body mass index 0.194 (0.115)# 0.046 (0.015)*** 0.009
(0.000, 0.020)

Via education −0.269 (0.048)*** −0.204 (0.038)*** 0.055
(0.032, 0.081)***

Via cognition −0.306 (0.073)*** −0.047 (0.024)# 0.014
(0.001, 0.030)#

Via income −0.052 (0.019)** −0.231 (0.095)* 0.012
(0.002, 0.025)#

Total indirect effect 0.238
(0.165, 0.315)***
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(b = 0.01, p = 0.08), or income (b = 0.01, p = 0.07). Thus, 
mediational hypothesis 2 was partially supported.

All variables in the model accounted for 78.8% of 
the variation in GrimAge. This included direct effects, 
depicted in Fig.  2, in which the ADHD-PGS was posi-
tively associated with smoking pack years (b = 1.62, 
p < 0.001), which in turn, predicted older epigenetic age 
(b = 0.08, p < 0.0001). Similarly, higher ADHD-PGS was 
positively associated with depressive symptoms (b = 0.11, 
p < 0.001), which in turn, predicted older epigenetic age 
(b = 0.21, p < 0.0001). The ADHD-PGS was not related to 
BMI (b = 0.19, p = 0.09), but BMI significantly predicted 
older epigenetic age (b = 0.05, p < 0.001). Higher ADHD-
PGS significantly and inversely associated with more 
educational attainment (b = −0.27, p < 0.0001) which, in 
turn, predicted younger GrimAge (b = −0.20, p < 0.0001). 
Higher ADHD-PGS significantly and inversely associ-
ated with higher cognitive scores (b = −0.31, p < 0.0001), 
but cognitive scores did not predict GrimAge (b = −0.05, 
p = 0.07). Lastly, higher ADHD-PGS significantly and 
inversely associated with higher income (b = -0.05, 
p < 0.01), which, in turn, significantly predicted younger 
GrimAge (b = −0.23, p < 0.05). Additional paths added 
for model fit and for covariates are provided in the Addi-
tional file 1 Table S3.

Multi‑mediation effects through education and other 
mediators
To test hypothesis 3, multi-mediational models were 
constructed, as shown in Fig.  3. The model fit was 
good (χ2(42) = 5159.42, p < 0.0001, RMSEA = 0.030, 
CFI = 0.998, TLI = 0.983) with a similar or slightly bet-
ter fit than the single mediation model as indicated by 
the RMSEA and TLI. In this model, as shown in Table 4, 
the association between ADHD-PGS and GrimAge was 
the same as for the single mediation model (b = 0.22, 
p < 0.01) as was the percentage of effect being mediated, 
51.6%. The effect of the ADHD-PGS through education 
to GrimAge was secondarily mediated through smoking 
(b = 0.04, p < 0.0001), depressive symptoms (b = 0.005, 
p < 0.01), BMI (b = 0.003, p < 0.05), and income (b = 0.008, 
p < 0.05), but not via cognition (b = 0.006, p = 0.09). Thus, 
hypothesis 3 was partially supported.

The ADHD-PGS, mediators, and covariates explained 
80.5% of the variation in GrimAge. Direct effects from the 
ADHD-PGS include that it inversely predicted education 
(b = −0.27, p < 0.0001) and cognition (b = −0.18, p < 0.01), 
and positively predicted depressive symptoms (b = 0.09, 
p < 0.05) and smoking (b = 1.13, p < 0.05), but did not 
predict BMI (b = 0.13, p = 0.26), or income (b = −0.02, 
p = 0.31). Significantly and directly related to older 

Fig. 3  SEM results showing multiple mediation pathways for the relationships between the ADHD polygenic score (ADHD-PGS) and GrimAge in 
later life. #p < .10, *p < .05, **p < .001, ***p < .0001
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GrimAge were smoking (b = 0.08, p < 0.0001), depressive 
symptoms (b = 0.21, p < 0.0001), BMI (b = 0.05, p < 0.001), 
less education (b = −0.20, p < 0.0001), less income 
(b = −0.23, p < 0.05), but not cognition (b = −0.05, 
p = 0.07). Notably, there was a significant direct effect 
from education to GrimAge (b = −0.20, p < 0.0001); with 
each additional year of education attained, there was a 
fifth of a year decrease in GrimAge.

Overall, the total indirect effect of the ADHD-PGS on 
GrimAge was (b = 0.24, p < 0.0001) proportionally simi-
lar, but in opposite direction to the total indirect effect of 
education on GrimAge (b = −0.22, p < 0.0001). As shown 
in Table  4, the specific indirect effect from the ADHD-
PGS to GrimAge was significant via education (b = 0.06, 
p < 0.0001), via smoking (b = 0.09, p < 0.05), and via 
depressive symptoms (b = −0.02, p < 0.05), whereas non-
significant paths were via BMI (b = 0.006, p = 0.30), via 
cognition (b = 0.008, p = 0.15), and via income (b = 0.004, 
p = 0.39). As shown by blue shaded boxes in Fig.  3, the 
specific indirect effects from education to GrimAge 
were significant via smoking (b = −0.13, p < 0.0001), 
via depressive symptoms (b = −0.02, p < 0.01), via BMI 
(b = −0.01, p < 0.01), and via income (b = −0.03, p < 0.05), 

but not via cognition (b = −0.02, p = 0.07). Additional 
paths added for model fit and for covariates are provided 
in the Additional file 1: Table S4.

Sensitivity analysis for education
Because it is also possible that an ADHD-PGS under-
lies cognitive challenges that would likely affect years 
of schooling pursued, we conducted analyses to assess 
whether the results found could be due to a differential 
effect of education among the lowest and highest quar-
tiles of the ADHD polygenic score. We constructed lin-
ear regression models to include an interaction term 
(ADHD-PGS*education), adjusted for the ADHD-PGS, 
education and covariates, and did not find evidence for 
the interaction (b = −0.04, p = 0.371) or when including 
only those in the lowest and highest quartiles of the poly-
genic score.

Discussion
In this study, we evaluated whether an epigenetic marker 
for accelerated biological aging and earlier mortality was 
associated with ADHD genetic burden, and whether the 

Table 4  Unstandardized direct and indirect effects of the ADHD polygenic score (ADHD-PGS) on GrimAge for the multi-mediation 
model

SE = standard error, 95% CI = 95% confidence interval, estimated from a bias-corrected bootstrap procedure with 5000 draws
# p < .10; *p < .05; **p < .01; ***p < .001. Total effect from ADHD-PGS to GrimAge: β = 0.459, SE = 0.090, p < .0001. Total effect from Education to GrimAge: β = −0.421, 
SE = 0.038, p < .0001

Predictor or 
mediator

Path a1: ADHD-
PGS → mediator

Path a2: 
Education → 
mediator

Path b: Mediator 
→ GrimAge

Path a1*b: 
Indirect effects: 
ADHD-PGS → 
mediator → 
GrimAge

Path a2*b:
 Indirect effects: 
education → 
mediator → 
GrimAge

Path a1–a2–b: 
Indirect effects: 
ADHD-PGS → 
education → 
mediator → 
GrimAge

Path c: Direct 
effects: on 
GrimAge

Beta (SE) Beta (SE) Beta (SE) Beta (SE) Beta (95% CI) Beta (95% CI) Beta (SE)

ADHD-PGS 0.222 (0.080)**

Smoking 1.134 (0.477)*  − 1.745 (0.202)*** 0.077 (0.003)*** 0.087 (0.026, 
0.150)*

 − 0.134 (− 0.163, 
− 0.106)**

0.036 (0.024, 
0.050)***

Depressive symp-
toms

0.086 (0.033)*  − 0.087 (0.014)*** 0.214 (0.052)*** 0.018 (0.005, 
0.035)*

 − 0.019 
(− 0.029, − 0.010)**

0.005 (0.002, 
0.009)**

Body Mass Index 0.125 (0.115)  − 0.258 (0.049)*** 0.046 (0.015)*** 0.006 (− 0.002, 
0.016)

 − 0.012 
(− 0.019, − 0.005)**

0.003 (0.001, 
0.005)*

Education  − 0.269 (0.048)*** 0.055 (0.032, 
0.081)***

 − 0.204 (0.038)***

Cognition  − 0.180 (0.069)** 0.470 (0.030)***  − 0.047 (0.024)# 0.008 (0.000, 
0.019)

 − 0.022 (− 0.042, 
− 0.002)#

0.006 (0.001, 
0.012)#

Income  − 0.018 (0.018) 0.133 (0.008)***  − 0.231 (0.095)# 0.004 (− 0.003, 
0.012)

 − 0.031 (− 0.052, 
− 0.010)*

0.008 (0.002, 
0.015)*

Total Indirect 
Effect for ADHD-
PGS to GrimAge

0.237 (0.165, 
0.313)***

Total indirect 
effect for educa-
tion to GrimAge

 − 0.217 (− 0.257, 
− 0.178)***
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association was mediated by hallmark behavioral and 
sociodemographic factors related to ADHD. We evalu-
ated these mechanisms in a population-based sample, 
that includes adults over age 50, in which a polygenic 
score for ADHD represents a continuum of risk for hav-
ing characteristic features of ADHD. Older biological 
age was indexed by a blood-based epigenetic biomarker 
called GrimAge, which has been associated with more 
disease co-morbidities and all-cause mortality. We found 
that the relationships with the epigenetic biomarker are 
partially mediated through educational attainment, life-
time smoking pack-years, and depressive symptoms, but 
not BMI, cognitive function or household income. Fur-
thermore, there was evidence for pathways of effect in 
which the ADHD-PGS associated with lower educational 
attainment, which in turn associated with more smok-
ing, depressive symptoms, higher BMI, and lower adult 
income to significantly affect GrimAge. While a higher 
ADHD-PGS increased epigenetic age, more education 
mitigated that effect, partially through behavioral and 
sociodemographic mediators. This implies that more 
educational attainment can mitigate negative outcomes 
related to damaging health and sociodemographic cir-
cumstances related to ADHD. Additionally, this epige-
netic biomarker can be useful for indexing the effects 
of ADHD genetic burden and behavioral correlates of 
ADHD on multi-morbidity and lifespan.

ADHD genetic burden and the epigenetic score to index 
epigenetic aging
We found that ADHD genetic burden is associated with 
GrimAge directly, with some of the effect mediated 
through behavioral and sociodemographic correlates. 
The direct relationship is likely attributable to both over-
lapping genetic and environmental influences. The extent 
to which DNA methylation is under the control of genet-
ics specific to ADHD is largely unknown [89]. An analysis 
of differentially methylated regions via an epigenome-
wide association scan conducted on the ADHD-PGS has 
shown that the methylation levels of one significant and 
12 suggestive sites were not likely to be under genetic 
control [52]. Given that prior research has shown that 
ADHD genetic burden is associated with lower over-
all global methylation levels among ADHD cases, but 
not controls; that cases had significantly greater preva-
lence of specific behaviors (including smoking, alco-
hol, and substance use, major depression, generalized 
anxiety, and others [53]); and our finding that effects 
of ADHD genetic burden on GrimAge were mediated 
via behavioral factors (educational attainment, lifetime 
smoking pack-years, and depressive symptoms), taken 
together, these implicate that DNA methylation levels 
encompassed by the GrimAge clock are responsive to 

behavioral correlates related to ADHD [64]. This is prom-
ising given that behavioral correlates are more modifiable 
than one’s genetic code. Because ADHD genetic burden 
was unrelated to the first-generation epigenetic clock 
in a prior study and in ours, further research aimed at 
evaluating the ADHD relationship with other epigenetic 
clocks or differentially methylated regions would be use-
ful to gauge clinical utility of other epigenetic markers for 
reflecting accelerated aging due to these behaviors.

It is well-known that genetics are not a lone predictor 
of ADHD or its features because a multitude of environ-
mental components likely contribute, including early life 
exposures and contexts involved, but etiological path-
ways are poorly understood [12]. Emerging evidence 
suggests that DNA methylation could be part of the 
etiological pathway to ADHD [89] although we do not 
investigate etiology to ADHD in this study. Thus, future 
studies that can assess how there may be dynamic rela-
tionships between changes in both DNA methylation and 
ADHD-related behaviors over time would be useful for 
understanding how epigenetic scores can serve as use-
ful biomarkers to assess accelerated aging. Longitudinal 
studies are also needed to evaluate how epigenetic bio-
markers can change with respect to behaviors and soci-
oeconomic contexts related to ADHD because different 
epigenetic signals might arise with different degrees of 
symptom presentation across the lifecourse. While this 
study could not assess change in epigenetic signals, we 
show that one epigenetic clock can serve as an omni-
bus older-age biomarker of accelerated biological aging 
related to genetic liability for ADHD and the related 
behavioral or sociodemographic circumstances salient to 
reduced lifespans for those with ADHD.

Behavioral and sociodemographic correlates for ADHD 
and older epigenetic age
Less smoking, fewer depressive symptoms, lower BMI, 
and higher adulthood socioeconomic status were impor-
tant for mitigating faster epigenetic aging and risk for 
earlier mortality due to ADHD genetic burden. The pub-
lic health burden of any one of these health conditions 
at any age is substantial [90, 91], yet individuals with 
ADHD have elevated likelihood for exhibiting all of these 
features and particularly are at 50 to 300% elevated risk 
for the mental health and substance use factors [92–94]. 
These links between ADHD and multiple adverse health 
mediators heighten the public health significance for 
individuals with higher ADHD genetic burden and thus, 
identifying useful clinical biomarkers of health could 
facilitate their use in preventive health care.

What is most striking from our findings is that there is 
a primary mediating role of educational attainment and 
thus, points to the potential role it can play in mitigating 
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adverse behaviors, lifestyle factors, accelerated aging 
and earlier mortality. Our results indicate that greater 
educational attainment could nullify the direct effect of 
ADHD genetic burden on GrimAge. However, there are 
good reasons that individuals with ADHD and related 
features do not pursue higher education, stemming from 
learning and behavioral challenges and often the lack of 
educational supports. Educational outcomes have also 
been linked to neurocognitive functioning across multi-
ple domains, in which there tend to be deficits or delays 
in development among those with ADHD [12, 95]. Thus, 
our findings prompt the question of whether pursu-
ing more education assists with greater development of 
neurocognitive abilities in order to abate the secondary 
adverse behavioral and lifestyle factors leading to short-
ened lifespans and accelerated epigenetic aging. An 
answer to this question may make our finding regarding 
primary mediation of health variables on GrimAge, as an 
index of mortality risk, through education particularly 
important as a health and prevention target for those 
with high varying degrees of genetic burden for ADHD. 
Furthermore, it would be useful to conduct additional 
studies to evaluate potential mechanisms through these 
other mediators and whether the degree of variation in 
and prediction from ADHD genetic burden varies due 
to environmental factors, socioeconomic resources, and 
how these might modify the relationships with epigenetic 
age or mortality risk.

Limitations
Despite the strength of this study with the indexing of 
epigenetic age in older adulthood and mediating soci-
odemographic and behavioral pathways, we acknowledge 
several limitations. This study represents a snapshot in 
older age, for those at different levels of polygenic indi-
ces for ADHD who have survived to older adulthood. 
The sample was older at the outset than those typically 
assessed for features of ADHD, so it is unknown how 
such symptoms may attenuate in adulthood. It is also 
unknown how behavioral variables, including medica-
tion use, may have changed throughout the lifecourse 
and what effects they would have in accounting for the 
ADHD-PGS to epigenetic age relationship.

A prior evaluation of age patterns has shown that log 
odds for mortality due to ADHD increase in the age 
ranges of 46–64 [6]. Thus, it is possible that those who 
had the highest risk for shortened lifespan due to higher 
ADHD genetic burden are not included in the study. 
However, we are studying effects in an age range when 
those who have survived have experienced cumulative 
systems damage that is still reflected in older epigenetic 
age. Also, epigenetic age in the analytic sample is younger 
than chronological age, which means that on average, 

there is a distribution of healthier individuals who were 
included in the present study. Hence, any effects we 
detect are likely attenuated.

Another limitation is not considering gene-by-envi-
ronment effects when there is likely a dynamic interplay 
occurring between genetic regions encompassed within 
the polygenic score and sociodemographic or behavioral 
factors. There is also a limitation of temporality because 
DNA methylation changes may occur earlier in life, with 
prior evidence showing for example that early life stress 
experiences can alter methylation levels [96, 97]. These 
early changes in methylation signatures can contribute 
to the etiological manifestation of mediators being evalu-
ated rather than the mediators temporally predicting 
the methylation signatures. Future studies with multiple 
time-points of methylation assessment are needed to 
evaluate this.

Additionally, we do not look at onset of co-morbidities, 
such as age of onset of disease, which can differentially 
affect mortality risk. All measures for this study were 
taken in middle to later adulthood, so it is unknown how 
behaviors from earlier life affect the relationship between 
a polygenic score for ADHD and epigenetic age. How-
ever, a strength of this study is assessing a marker of the 
biological clock and aging real-time in a naturally aging 
sample. Because the sample is drawn from a population-
based study, recruitment was not based on disease status 
or genetic risk, and thus, results give us a representation 
of today’s middle to older aged adults across a range of 
both DNA methylation levels and ADHD genetic burden.

Conclusions
For geroscience research, we expand on the current 
knowledge to show that this blood-based index of epige-
netic age can be used to evaluate the degree to which risk 
for earlier mortality differs based on mediating factors 
related to ADHD genetic burden. Research to identify 
links between ADHD and epigenetics is in the very early 
stages [89] overall. We show that an epigenetic score 
could serve as a monitoring tool for degree of biologi-
cal damage garnered from adverse behavioral and soci-
odemographic conditions for which those with greater 
ADHD genetic burden are at high risk. More work is also 
needed to unpack the potentially pivotal role educational 
attainment has for mitigating adverse life circumstances 
related to ADHD genetic burden that accelerate bio-
logical aging that is reflected in GrimAge. Furthermore, 
findings from this study emphasize the relevance of inte-
grating the behavioral and epigenetic markers in this 
understudied group of older individuals at elevated risk 
for shorter health- and lifespans due to genetic liability 
for ADHD-related circumstances.
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